
Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

i

Technical Report on Machine Learning

Quality Evaluation and Improvement

2nd English Edition

January 20, 2023

 (a revision of the Japanese version published on August 2, 2022)

Technical Report DigiARC-TR-2023-02

Digital Architecture Research Center

National Institute of Advanced Industrial Science and Technology (AIST)

Technical Report CPSEC-TR-2023002

Cyber Physical Security Research Center

National Institute of Advanced Industrial Science and Technology (AIST)

Technical Report

Artificial Intelligence Research Center

National Institute of Advanced Industrial Science and Technology (AIST)

© 2023 National Institute of Advanced Industrial Science and Technology

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

ii

Foreword

In the project "Research and Development on the Quality Assessment Reference and Testbed

of Machine-Learning /artificial intelligence systems" (JPNP20006) commissioned by the New

Energy and Industrial Technology Development Organization (NEDO), we are developing

Machine Learning Quality Management Guidelines [1] to explain the quality of machine learning.

While developing the guidelines, we have also been researching and developing techniques for

evaluating and improving the quality of machine learning. Although this research and

development is still ongoing, since we have obtained technical knowledge on the quality

evaluation described in the Machine Learning Quality Management Guidelines, we report on the

progress of this research and development for the recent three years (FY 2019~2021).

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

iii

Table of Contents

1 Introduction ... 1

1.1 Overview of this research and development .. 1

1.2 Author list .. 4

1.3 Acknowledgements ... 4

2 Visualization of Machine Learning Models ... 5

2.1 Survey on methods to support using machine learning .. 5

2.2 Visualization of model structure and worker information .. 7

2.3 Future work ... 11

3 Improved Quality through Better Application of Data Augmentation ... 12

3.1 Research purpose .. 12

3.2 Improved application layer for data augmentation.. 12

3.3 Proposal for a new mixing method by improving Mixup ... 15

4 Debug-Testing of DNN Software ... 18

4.1 Direct cause of failure .. 18

4.2 Internal indices .. 19

4.3 Experiments: method and results .. 20

4.4 Related work ... 23

4.5 Conclusion .. 24

5 Debugging and Testing of Training Data ... 25

5.1 Three Problem Settings .. 25

5.2 Debugging Problems of Training Data ... 25

5.3 Outliers and Neuron Coverage .. 29

5.4 Experiments and Discussions .. 31

5.5 Conclusion .. 34

6 Evaluation and Improvement of Robustness .. 35

6.1 Robustness measure (maximum safe radius) ... 35

6.2 A survey on methods for evaluation and improvement of robustness 36

6.3 Conclusion .. 42

7 Generalization Bounds of Machine-Learned Models ... 43

7.1 Generalization bounds .. 43

7.2 The theory of generalization bounds.. 44

7.3 Computational examples of generalization bounds ... 48

7.4 Towards the evaluation of “the stability of trained models” .. 52

8 Adversarial Example Detection... 54

8.1 Research summary ... 54

8.2 Overview of adversarial example detection approaches ... 54

8.3 NIC system design overview .. 56

8.4 NIC system implementation ... 57

8.5 Computer experiment ... 58

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

iv

8.6 Implementation of the NIC framework .. 60

8.7 Evaluation of the effectiveness of NIC with the Kullback-Leibler divergence 65

9 AI Quality Management in Operation ... 68

10 References ... 70

Machine Learning Quality Management Guideline, National Institute of

2nd English edition Advanced Industrial Science and Technology

1

1 Introduction

Machine Learning Quality Management Guideline has been developed to clearly explain the

quality of various industrial products including statistical machine learning (3rd Edition [1]). The

third edition of the guideline focuses on the nine internal quality characteristics (e.g., Stability of

the trained model, Reliability of underlying software system, etc.) for machine learning systems,

but techniques for evaluating and improving these internal quality characteristics have not been

sufficiently established yet. This document reports the current results on survey, research, and

development of techniques for evaluating and improving the internal quality characteristics,

which are being conducted for supporting the development of the guideline.

1.1 Overview of this research and development

Figure 1.1 shows the relationship between the machine learning quality evaluation and

improvement techniques (the center yellow boxes in Figure 1.1, where the number in each box

shows the chapter number explained in this report) that were researched and developed for the

recent three years (FY 2019~2021). The relations to the phases of the machine learning model

lifecycle and the nine internal quality characteristics are also shown. The techniques are briefly

introduced here, and the details are explained in Chapters 2 ~ 9.

Figure 1.1 Machine learning quality evaluation and improvement techniques in this report

– Visualization of Machine Learning Models (in Chapter 2) :

To support the quality evaluation work of machine learning models, we attempted to

visualize the difference and comparison results between multiple models and the

sensitivity of the workers (annotators and model designers) reflected in each model.

We proceeded with the implementation of a tool to visualize the work procedures of

the workers involved in creating the models and their influence on the models with

A-1: Sufficiency of

problem domain analysis

C-2: Stability of

trained models

D-1: Reliability of

underlying software systems

B-2: Uniformity of

datasets

B-1: Coverage of

datasets

A-2: Coverage for

distinguished problem cases

C-1: Correctness of

trained models

E-1: Maintainability of

quality during operation

Internal quality characteristics

in the MLQM Guideline

B-3: Adequacy of

data

Techniques in development

Techniques in operation

8: Detection of Adversarial data

9: AI quality management

4: Debug-testing of DNN Software

3: Improving application of DATraining data

Dataset

Testing data

Data in operation

Inference prog.

Input

Input

Monitor prog.

ML model

Update

Inference prog.

Evaluation prog.

Training prog.

ML model

Training algo.

2: Visualization of ML models

6: Evaluation of robustness

5: Debug-testing of training data

7: Evaluation of Generalization

ML quality evaluation and improvement techniques

researched and developed in FY 2019~2021

A
n
a
ly

sis
O

p
e
ra

tio
n

D
e
v
e
lo

p
m

e
n
t

Domain

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

2

multiple views[2][3].

– Improved Quality through Better Application of Data Augmentation (in Chapter 3):

To improve the data-diversity obtained by data augmentation and increase accuracy

and stability in deep learning, we devised new two data augmentation methods with

simple algorithms (FC-mixup and Latent DA) and report the results of their impact on

generalization performance in experiments [4]. In addition, for the Latent DA method,

we have been developing AdaLASE, for dynamically selecting appropriate layers for the

data augmentation.

– Debug-Testing of DNN Software (in Chapter 4):

The failures of DNN (Deep Neural Network) models can be considered from two

viewpoints of causes. One of them is the direct cause during inference (by prediction

and inference programs) and the other one is the root cause during training (by

training and learning programs, training models, and training data). We proposed an

indicator and an analysis method for evaluating the presence of bugs in training

programs by the internal information (e.g., neuron coverage) of DNN models, and then

confirmed that the indicator is useful by experiments [5].

– Debugging and Testing of Training Data (in Chapter 5):

For the case that failures in DNN (Deep Neural Network) models are caused by training

data bias, we researched methods for detecting such bias from two quality viewpoints:

model accuracy and model robustness. We proposed a method to evaluate the bias by

the internal states (e.g., neuron coverage) in the DNN models and confirmed that the

method is useful for debugging the training data by experiments.

– Evaluation and Improvement of Robustness (in Chapter 6):

To evaluate and improve robustness of machine learned models, we report on the

results of a survey on methods to measure the maximum safe radius (the maximum

value of noise that can be guaranteed not to cause misclassifications) as a measure of

robustness for input noise including adversarial examples, and methods to increase the

safe radius.

– Generalization Bounds of Machine-Learned Models (in Chapter 7):

To evaluate the generalization performance of machine-learned models, we report on

the results of a survey on theorems for generalization bounds, that are the upper

bounds on the expected values of the error rates (i.e., generalization errors) for all

inputs, including unseen data-samples. Then, we confirmed that (perturbated)

generalization bounds based on testing errors (i.e., test-set bounds) can be used for

evaluating the generalization performance, by experiments.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

3

– Adversarial Example Detection (in Chapter 8):

To establish a practical method for detecting adversarial examples, we report on the

results of a survey on the state-of-the-art adversarial example detection methods and

classifies them into four main categories, and then present the results of follow-up

experiments on representative methods. Consequently, we confirmed that NIC method

shows the highest detection rate. Then, we constructed the NIC framework for

detecting adversarial examples based on the NIC method and evaluated it by the

Kullback-Leibler divergence for explaining the reason why the NIC method is effective.

– AI Quality Management in Operation (in Chapter 9):

To maintain quality of machine learning models even for unseen data and/or changing

trends during operation, we report on the results of a survey on detection and

adaptation methods for changes in input-data distribution over time (e.g., concept

drift), and also a survey on the latest unsupervised domain adaptation methods (e.g.,

label-shift). The surveys include not only supervised methods but also unsupervised/

semi-supervised methods that are promising approaches from the viewpoints of

operational costs and practical adaptability.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

4

1.2 Author list

The authors of each chapter are as follows:

– Chapter 1: Yoshinao Isobe (AIST CPSEC)

– Chapter 2: Yuri Miyagi (AIST AIRC)

– Chapter 3: Tomoumi Takase (AIST AIRC)

– Chapter 4: Shin Nakajima (NII)

– Chapter 5: Shin Nakajima (NII)

– Chapter 6: Yoshinao Isobe (AIST CPSEC)

– Chapter 7: Yoshinao Isobe (AIST CPSEC)

– Chapter 8: Yusei Nakashima and Keiichi Nishida (Techmatrix)

– Chapter 9: Yoshihiro Okawa and Kenichi Kobayashi (Fujitsu)

1.3 Acknowledgements

This report is based on results obtained from the project "Research and Development on the

Quality Assessment Reference and Testbed of Machine-Learning /artificial intelligence systems"

(JPNP20006), commissioned by the New Energy and Industrial Technology Development

Organization (NEDO).

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

5

2 Visualization of Machine Learning Models

Information visualization is becoming a popular method to support the analysis of the

structure and behavior of machine learning models, which are known as black boxes. We have

started research on a new method for visualizing machine learning models with the following

two objectives:

– Visualization of differences and comparison results between multiple models

➢ Implementation of visualization based on expressions that are easy for humans to

interpret and understand

– Visualization of the sensitivity of workers (annotators of training data, designers of

model structures) reflected in the model

➢ Proposal of new factors that can be used for quality assessment

In this chapter, we first describe the results of a survey of recent machine learning model

visualization techniques. Then, we introduce the results of a prototype visualization tool for

observing model and worker information, developed in 2020-2021, and our future

implementation policy.

2.1 Survey on methods to support using machine learning

The basic purpose of visualization methods for machine learning is to improve the

interpretability of models, and this is closely related to XAI (Explainable AI), which has attracted

attention in recent years. There are no definitive definitions or evaluation methods for XAI,

however, many papers about the classification of XAI are published, and we can devise

visualization objectives and methods along these lines. In [6], the approaches to increase

interpretability are classified into four categories:

(1) Total explanation (Approximation of a complex model structure by a simple model)

(2) Partial explanation (Explaining the rationale for decisions about model output results)

(3) Design of explainable models (Creation of readable models at the design stage)

(4) Explanation of the deep learning model (e.g., Highlighting the parts of the image data

that the model recognizes)

Especially (2) and (4) have much room for contribution by visualization. These machine learning

visualization methods are continuously being studied, and the number of survey papers is

increasing due to the diversity of applications and target cases. For example, Hohman et al. [7]

described and classified deep learning visualization methods according to the 5W1H elements.

It also presents several overall directions and issues in the field of deep learning visualization.

Especially "improving interactions for model evaluation" and "improving interpretability

through active human involvement in models” are closely related to our research, which aims to

develop visualization methods for quality evaluation.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

6

As research on machine learning visualization progresses and becomes popular in the real

world, there is a growing tendency for complex analysis to be performed in a single visualization

view. In the past, visualization methods basically focused on detailed analyses of single models

specialized in either data ([8]) or model structure ([9]). However, in recent years, research has

been conducted on combined visualization methods for data and model structure, as well as

methods that aim to compare multiple models. The number of elements that make up a machine

learning model is enormous, and it takes a lot of time and effort to create visualization results

for the number of models and compare them side by side. Besides, the differences in structure

and accuracy between the models to be compared are often small and features of the models

may be overlooked. Therefore, there is a high need for a visualization method that uses

expressions that emphasize the differences so that the differences can be found efficiently within

a limited screen. (For example, in [10], the pipeline from data input to output, hyperparameter

values, etc. for more than 10 models can be compared on a single screen.)

So far, we have introduced trends and examples of visualization methods regarding the

properties and accuracy of the models themselves. In parallel with this, we have also investigated

how the workers (annotators of training data, designers of model structures) involved in model

creation interact with the models. In fields such as image recognition, models with accuracy

beyond human recognition capabilities have been developed, but there is a persistent suggestion,

regardless of the field, that active human intervention is desirable to improve the accuracy of

models. There are many papers that discuss the following items regarding the relationship

between AI and humans and effective intervention methods in the modeling process:

– Introduction of operations (adjustment and evaluation) to improve the accuracy of the

model in the learning process

– Designing an interface that is easy to use and can maintain the motivation of the

operator

– Collaboration with related fields such as cognitive science and psychology

As an example, Amershi et al. examined the psychological state of workers who were

assigned feedback to evaluate and improve several models [11]. The authors found that the

workers preferred to be able to directly tell the correct processing steps to models. They also

said that workers get more motivated to give more active feedback when they find their actions

are improving the accuracy of the model. Although there seem to be few examples of

visualization of such information about the workers themselves and the impact of each worker

on the model, it can be adopted as a ground for quality assurance as follows:

– Show that their knowledge is sufficiently reflected in the model's behavior when

domain or machine learning experts participated in the creation of the model.

– Indicate which workers' behavior is strongly reflected in the model and use this as a

clue to identify elements (training data, parameters, etc.) that should be adjusted.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

7

2.2 Visualization of model structure and worker information

Based on the above research results, we place particular importance on "comparative

visualization of multiple models" and "visualization of worker's sensitivity" among machine

learning model visualization methods. We proceed to design a visualization tool with both

properties. Figure 2.1 shows an overview of the proposed method.

Figure 2.1 Overview of machine learning models and worker information visualization methods

 Logging of differences between models

First, we collect logs of the structure of the model to be visualized (the adjustment process

and test results). In the current implementation, we suppose image classification as a case study

and obtain the model designer's parameter adjustment process and test results as text files using

Cometl.ml, a machine learning experiment management tool. For the annotators, we do not

directly collect work logs, but indirectly evaluate their work based on how the model designers

selected data and applied preprocessing.

From these logs, we calculate differences between models (the amount of change from the

model used immediately before). Differences between models are classified into three

categories: training data, model structure, and optimization algorithm, and are calculated for

each. The difference in training data is calculated by adding up the data used, the number of

classes, and the difference in parameters used for preprocessing. The difference in model

structure is obtained by creating pairs of layers that comprise the two models and summing the

dissimilarities (differences in layer types and parameters) of each pair. For the difference in

optimization algorithms, a constant is assigned if the algorithm types are different. If they are

the same, the difference is calculated from the difference in parameters. After obtaining the three

types of differences, we obtain the overall change in the model by summing these values.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

8

 Developing prototype of model difference visualization tool

In 2020, we implemented views on basic information such as model structure and output

results, and in 2021, added views to visualize the progress of model adjustments and testing by

workers.

Figure 2.2 shows the overview of prototype visualization views, which visualize the results

of MNIST for two simple models developed in 2020. Assuming that the main users of this tool

would be model designers and considering the possibility that users who were not familiar with

visualization would be included, we combined basic visualization methods (line graphs, bar

graphs, etc.) and implemented them with the policy of actively linking them (e.g., highlighting

related parts).

Figure 2.2 Visualization views on model structure and output results

We created the tool on JupyterLab, mainly using the machine learning library PyTorch and

the visualization library Bokeh, so that we could compare the features of the two models:

(1) Network of each model structure

(2) Bar graph of output results for each class

① Visualization for each model

② Visualization of the difference between two models

(3) Scatter plot of output result correlation between two selected classes for each model

(4) Line graph of accuracy

(5) Thumbnail list of data classified with particularly high (low) confidence

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

9

Figure 2.3 shows an example of the results of classifying the output to MNIST for two models.

The horizontal axis represents the class from 0 to 9, and the vertical axis represents the amount

of data. The color-coding of each bar represents the combination of correct (T) and incorrect (F)

answers for the two models, for example, where TF (FT) means that only model 1 (2) correctly

classified. Immediately after the start of learning (Figure 2.3, left), model 1 had a high percentage

of correct answers in classes 0, 1, and 7, and model 2 had a high percentage of correct answers

in classes 2, 6, and 8, indicating that each model had different strengths. At the advanced stage

of learning (Figure 2.3, right), both models had high percentages of correct answers in many

classes. Besides, model 1 has a high percentage of correct answers, including classes 3, 4, 5, and

7, which model 2 is not good at, indicating that model 1 is more advanced in learning than model

2 at this stage.

Figure 2.3 Examples of comparing the output results of two models

Next, we introduce the visualization results generated by the time-series visualization

function for model test results, created in 2021. Figure 2.4 visualizes the amount of change in

accuracy and model structure when multiple image classification models are tested in sequence.

The horizontal axis represents the order of the tests, and the vertical axis means top-1 for each

model. The boxes colored gray to yellow correspond to one model. The tool visualizes three small

icons inside each box, except for the box for the first model used. The colors of these icons and

boxes represent the amount of change from the model used immediately before, with higher

saturation meaning greater change. Specifically, the top icon (red) represents the training data,

the middle icon (blue) represents the model structure, and the bottom icon (green) represents

the amount of change related to the optimization algorithm. The boxes (yellow) reflect the total

amount of these changes. The center coordinates of each box are connected by edges to clearly

indicate the change in accuracy.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

10

Figure 2.4 An example of visualization of a worker's model adjustment history

Table 2.1 Parameters of the model used for work history visualization

The area circled in red in Figure 2.4 shows the visualization results of the process of adjusting

the ResNet model trained on CIFAR-100. Referring to the hyperparameter tuning scenario

conducted in [12], the model was trained and tested 6 times and logged while changing the

parameters as shown in Table 2.1. 𝑙 is the learning rate, 𝑚 is the momentum value. 𝑝 and 𝑎

are the erasing probability and max erasing area when random erasing was applied to the

training data. 𝑑 is the depth of the ResNet model used.

The numbers in the red boxes in Figure 2.4 correspond to the Indexes in Table 2.1; in 2 and

5, of the three icons, the top icon representing changes in the training data is highlighted in

orange. This reflects the fact that the values of 𝑝 and 𝑎, parameters related to the training data,

were changed significantly when going from model 1 to 2 and from 4 to 5. Similarly, in 3 and 4,

the bottom icons are highlighted in yellow-green, indicating changes related to the optimization

algorithm. Specifically, it reflects the change in 𝑙 and 𝑚. The color of the box also indicates that

the third model had the largest amount of change from the model used immediately prior.

Compared to model 2, four parameters (𝑙, 𝑚, 𝑝, and 𝑎) have been changed. On the other hand,

the overall change in model accuracy was small, indicating that the impact of this parameter

adjustment procedure was limited.

The box to the right of the red area plots the progress of the test after changing the training

data to MNIST and ImageNet. The two boxes near the center of Figure 2.4 are plotted in bright

yellow, which coincides with the timing of the change in the data set and model used. Thus, we

can observe the long-term working history of multiple cases, in addition to showing the detailed

adjustment process of a particular model.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

11

2.3 Future work

In future work, we would like to work on extending the visualization function with the

following policy. First, we will aim to visualize the results of long-term evaluation of models and

work contents and recommendations for improvement for a single or a small number of workers.

Then, we will compare the work patterns of a large number of workers and visualize the

similarity and classification results among models or workers from an overhead perspective. By

observing these visualization results, we would like to be able to estimate the skill level of

workers and classify their work characteristics (work patterns).

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

12

3 Improved Quality through Better Application of Data Augmentation

This chapter describes the results of developing a new method for applying data

augmentation in neural network learning and evaluating its effect to learning quality through

experiments.

3.1 Research purpose

Data augmentation is a technique to increase the number of samples by adding deformations

to the data, and it is highly effective in deep learning, which has a tendency of performance

degradation when the number of training samples is small. On the other hand, the effectiveness

of data augmentation strongly depends on the data used, so the selection of data augmentation

methods and the parameters of each method must be set appropriately. However, theoretical

analysis of data augmentation is difficult, and general ways to use it have not yet been

established. This leads to unintentional and inappropriate use, which in turn compromises the

quality of learning. In fact, there are many cases that training performance is degraded by setting

inappropriate values for the amount of deformation of each data augmentation method, such as

mask size or rotation angle, or where the user is puzzled as to what data augmentation method

to select for the actual data to be used.

Therefore, to move away from the empirical use of data augmentation, this study focused on

data diversity. Increasing diversity is the essential goal of data augmentation, and it has been

demonstrated in the work of [13] that increasing diversity has a significant impact on improving

generalization performance. Recently, a technique called RandAugment [14], which dynamically

applies randomly selected operations from multiple data augmentation operations during

training, has attracted much attention, but while it greatly improves diversity, effectively using it

is not easy because many parameters need to be adjusted. In this study, we proposed the

following two new methods for applying data augmentation related to data diversity, and

improved the algorithms and evaluated their performance.

– We apply data augmentation at various layers of the neural network, including hidden

layers, and perform automatic optimization of the applied layer (Section 3.2).

– We improve the Mixup method [15], a promising data augmentation method, and

propose a new way to mix samples (Section 3.3).

3.2 Improved application layer for data augmentation

 Data augmentation at hidden layers

Generally, data augmentation is considered to be applied to input data, but in neural

networks, it is also possible to apply data augmentation to hidden layers. There are several

previous studies on this subject, but most of them are not versatile methods, such as Manifold

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

13

mixup [16], which limits the method to mixup [15], or other methods that require specific

networks and datasets. In this study, we considered applying various data augmentation

methods used for image data, such as affine transformation and mask processing, in the hidden

layers. Since features are extracted hierarchically in CNNs, data augmentation can be applied in

various layers randomly selected for each minibatch to generate a wide variety of samples. As

with application to input images, data augmentation can be applied to the feature maps obtained

at the intermediate layers, making implementation easy.

An example of actual application of mask processing and translation to an input image and

feature map is shown in Figure 3.1. Here, a sample is input to the model in training, and the

images are shown in the upper row, aligned in size, immediately after data augmentation was

applied at different layers with the same parameters (mask position and translation amount).

The feature maps in the final layer of the sample are shown in the lower row. They are different

images depending on the layer where the data augmentation was applied. This result shows that

data augmentation at various layers leads to an increase in the diversity of the generated data

and results in learning different from when data augmentation is applied only to the input data.

Figure 3.1 Example of applying data augmentation to input images and feature maps obtained at

hidden layers

To compare the performance of data augmentations in the input layer and that in feature

maps, we used various data augmentations and obtained test accuracies for models trained with

supervision. Here, WideResNet28-10 was trained for 200 epochs using the CIFAR-10, Fashion-

MNIST, and SVHN (without extra data) datasets. The results are shown in Figure 3.2. In each

figure, the horizontal axis represents the accuracy [%] of the conventional method (Input DA)

and the vertical axis represents the accuracy of the proposed method (Latent DA). As can be seen

from these results, the proposed method tends to show higher accuracy than the conventional

method, and the proposed method presented higher accuracy even in cases where the

conventional method presented lower accuracy, such as the results using Crop. These results

indicate that the diverse samples generated by the application of data augmentation to random

layers are effective in improving performance.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

14

Figure 3.2 Comparison of test accuracy between input DA and latent DA

 Selecting appropriate layers for data augmentation

Although previous studies have shown that data augmentation at hidden layers is effective,

the question arises as to which layer is optimal for data augmentation. Although it is possible to

find the optimal layer by repeatedly training with different layers of data augmentation and

comparing the values of validation accuracy, it is an inefficient and impractical method because

it increases the overall training time. Therefore, in this study, we worked on developing a method

to dynamically discover the optimal layer for data augmentation in a single training session.

The approach is to prepare a parameter called the acceptance rate for each layer, update the

acceptance rate during training, and apply data augmentation in the layer selected

probabilistically according to the acceptance rate. The updating of the acceptance rate is done

using the gradient descent method as shown below.

𝑞𝑙 ← 𝑞𝑙 − 𝜂
𝜕𝐿𝑣𝑎𝑙

𝜕𝑞𝑙
,

where 𝑞𝑙 is the acceptance rate of layer 𝑙, 𝐿𝑣𝑎𝑙 is the value of the error when the validation

data is input, and 𝜂 is the step width of the update. In practice, the values of the validation data

should not be included in the algorithm, so the update is performed by creating pseudo-

validation data with the training data with data augmentation. In the initial state of training, all

acceptance rates are set to equal values so that the sum is 1, and the acceptance rate is updated

for each minibatch. This optimization is expected to improve the generalization performance by

increasing the acceptance rate of layers suitable for data augmentation and decreasing the

acceptance rate of layers unsuitable for data augmentation.

We named this method Adaptive Layer Selection (AdaLASE) and compared it to conventional

methods. Using CIFAR-10 as the data and ResNet18 as the model, we compared test accuracies

for no data augmentation, data augmentation on input, data augmentation at random layers, and

AdaLASE. Figure 3.3 (a) and (b) show the results using Cutout and Mixup, respectively. The mean

and standard deviation of the accuracy for five different initial values are shown for each method.

These results show that AdaLASE can perform as well as or better than conventional methods.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

15

Future plans include a detailed analysis of how layers are selected and whether AdaLASE is

working properly by looking at the change in acceptance rate during training.

(a) Cutout (b) Mixup

Figure 3.3 Comparison of test accuracy between AdaLASE and conventional methods

3.3 Proposal for a new mixing method by improving Mixup

In actual training, data augmentation often involves the simultaneous use of multiple

methods, such as cropping, rotating, and flipping. Therefore, we focus on the compatibility

between methods when multiple methods are used in this way, and in particular, we consider

discussing the compatibility from the viewpoint of data diversity. As a first step in this approach,

we propose a new method that is a variant of an existing method and use it simultaneously with

the original method to increase the diversity of the data generated and improve performance.

The method for formulating the diversity is described in the work of [13]. In this study, we first

compare only the accuracy and verify whether the proposed method improves the performance.

Here, we have improved Mixup [15], one of the data augmentation methods. This method

generates a new sample by linear interpolation of two samples, and takes the same ratio of linear

interpolation for each of the input values and labels, as shown in the following equation.

{
�̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗

�̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗
,

where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) represent the input values for the 𝑖-th and 𝑗-th samples, and 𝜆 is

the mixing ratio sampled from the beta distribution. Mixup was chosen as the subject of this

study because of its versatility and because it can be used for many numerical data, including

not only images but also time series data, and therefore, the impact of improving the Mixup

method would be significant.

An improved version of mixup so that it can also be performed in a hidden layer of a neural

network is called manifold mixup [16], but both mixups generate samples only in a localized

region of the data distribution, on a line segment between two points, and are inappropriate for

data sets with distributions in which the properties of the points on that line segment vary

nonlinearly.

The Feature Combination Mixup (FC-mixup) proposed in this study is a method of mixing

samples in a different way from conventional mixups, and is outlined in Figure 3.4. Suppose that

two samples A and B in the same minibatch output the features 𝑍A and 𝑍B in a randomly

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

16

selected layer. 𝑑 is the total number of features in that layer, FC-mixup randomly extracts and

combines 𝑑𝜆 features from 𝑍A and 𝑑(1 − 𝜆) from 𝑍B and generates a new sample 𝑍X. Since

the number of possible combinations is large for a single value of 𝜆 , different data can be

generated depending on the random number, and thus samples can be generated over a wide

range of the data distribution. FC-mixup is expressed as follows, so 𝑍A and 𝑍B are mixed so

that this equation is satisfied.

|𝑍A ∩ 𝑍X| = d𝜆

Figure 3.4 Overview of FC-mixup

This technique of generating new data by combining the parts of two data sets is also found

in Puzzle Mix [17], but the target is limited to the input image. A similar technique is used in

Adversarial mixup resynthesis [18], but it is limited to use in autoencoders, while FC-mixup is

designed for more general use. To increase the diversity of the generated data, a method that

simultaneously uses FC-mixup and Manifold mixup [16] is referred to here as the Hybrid method.

In our experiments, we used several multi-class classification datasets to compare the

classification accuracy of the test data between the conventional method (no data augmentation,

mixup at the input layer [15], Manifold Mixup [16]) and the proposed method (FC-mixup, Hybrid

method). MNIST, CIFAR-10, CIFAR-100, SVHN, and TinyImageNet were used for the data. Models

used were a multilayer perceptron (MLP) with one intermediate layer, a small convolutional

neural network (CNN), ResNet18, and ResNet50. In addition to the full-size data, experiments

were conducted on reduced data with 1,000 randomly selected samples. Means and standard

deviations in five trials with different initial values were obtained and compared.

The results in Table 3.1 show that in most cases the proposed method gives the highest

accuracy. Overall, FC-mixup tended to give better performance than the Hybrid method. It can

be said that the results of the present study are promising results, indicating that using the FC-

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

17

mixup and Hybrid methods is likely to improve the quality. Detailed analysis of the compatibility

between data augmentation methods focusing on diversity will be the subject of future work.

Table 3.1 Comparison of test accuracy on multi-class classification data

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

18

4 Debug-Testing of DNN Software

In the initial development stage of Deep Neural Network software (DNN software), we ensure

that the required functions and prediction performance are achieved through iterative trial-and-

error processes, in which three viewpoints (elaborating and refining requirements, preparing

datasets for training, and selecting appropriate machine learning models) are considered. This

trial-and-error process corresponds to debugging in conventional program development. In the

case of DNN software, the debugging activities involve generating datasets for debug-testing,

monitoring the training and learning status, and identifying and removing root causes that

hinder the fulfilment of requirements. In the following, we will report on a debug-testing method

investigated in FY2020, discuss the experimental results obtained, and summarize our future

plans.

4.1 Direct cause of failure

A standard method of supervised DNN learning involves two types of programs: training (or

learning), and prediction (or inference). When training data is given and a learning task to

achieve is made clear, a learning model for the target DNN software is selected, and some design

decisions on the method used in the training and learning process is fixed. If we use available

open-source machine learning frameworks, we may set up several parameters of the framework.

The next step is to construct training dataset. Then, we run the training/learning program

(possibly provided by the machine learning framework) with the training model and training

dataset as input, and derive a trained DNN model as a computation result. More precisely, the

training/learning program searches for a set of weight parameter values that define the trained

DNN model uniquely. This trained DNN model defines behavior of the prediction/inference

program.

From a user's point of view, a prediction/inference program is the entity to use. In the case

of a classification learning task, for example, the program calculates certainty levels of

probabilities of classification results for an input data. By examining the output results, we can

determine whether the DNN software works as intended. When the program does not produce

results as expected, we localize possible fault locations and remove them. In other words, we

conduct debugging.

A failure may be occurred due to a flaw somewhere in the information used in the execution

process of the training/learning program, either in the training dataset, the training model, the

learning mechanism, or their combinations. However, direct causes of failure in prediction/

inference results are attributed to the trained DNN model or set of obtained weight parameter

values. While a root cause of failure is somewhere and often not known, the failure is attributed

to a defect in the weight parameter values or the trained DNN model. Thus, from users' point of

view, a certain distortion of the trained DNN model seems a direct cause of the failure [19]. A

method to measure such distortion degrees is needed regardless of the root causes.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

19

In this chapter, we investigate whether we can detect faults in DNN software with an internal

metric to measure such distortion degrees of trained DNN models. The weight parameter values

in the DNN models are the output of the training/learning program, but there is no direct way to

check its validity, because those expected weight parameter values cannot be known in advance.

If such expected parameter values were known, training/learning could be skipped. We can just

use those known values, as embedded in a trained DNN model, to implement a prediction/

inference program.

4.2 Internal indices

This section first introduces the notion of neuron coverage (NC). We consider a learning

model as a network of neurons. Given a threshold, neurons whose output values exceed the

threshold are said to be activated. When the number of neurons constituting the learning model

is N and the number of activated neurons is A, the neuron coverage is defined as the ratio of

active neurons is (NC = A/N). In [20], NC is assumed to be criteria for test coverages of trained

DNN models; the research work investigates how the choice of input data for evaluation affects

NC values.

Figure 4.1 Trained DNN model.

In this chapter, NC is assumed to be used as an internal index [21] to represent distortion

degrees by appropriately choosing the target neurons to be considered. Figure 4.1 shows a

schematic diagram of the trained DNN model. NCs are defined for the neurons in the final stage

of the middle layer (or the penultimate layer as shaded gray), but not for all the neurons in the

trained DNN model as in [20].

In general, in machine learning techniques, this penultimate layer is often considered to hold

meaningful information. For example, in the case of an image classification task, the early stages

of the model is responsible for the correlation analysis (analysis of patterns of pixel values),

which plays a specific role in algorithms such as image recognition, and their calculation results

are summarized in the penultimate layer. In this chapter, we assume that direct causes of defects

are manifested in this internal layer. Furthermore, various statistical indices can be derived

based on NC values of this layer. We will investigate, through experiments, what derived index is

appropriate depending on test objectives to be investigated.

Classification Algorithm

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

20

4.3 Experiments: method and results

We present the results of several experiments and discuss the usefulness of the internal or

derived indices mentioned in the previous section. First, we show the results of comparative

experiments when a training/learning program (or a learning framework) has faults in it. In the

following, BI is the training/learning program which is a bug-injected version of a probably

correct program PC.

Figure 4.2 depicts the accuracy (the percentage of reconstructed correct answers) for a test

dataset. In the experiments, a classical fully-connected network is chosen as the learning model,

and different number of neurons are placed in the middle layer, which implies that each model

is of different structural capacity. When we have a sufficient number of neurons (50 on the

horizontal axis), there is no significant difference in the accuracy between PC and BI. Thus, it is

difficult to distinguish between the PC and BI solely by examining their accuracy values, and thus

the presence or absence of a defect cannot be identified. In addition to this finding (Figure 4.2),

the results of an experiment to systematically investigate the situation further (Figure 4.3) are

presented below.

Figure 4.2 Learning models of different capacities.

Figure 4.3 Relationship with internal indices

Figure 4.3 plots values of the internal index (activated neurons or neuron coverage) on the

vertical axis. Their absolute values, for example, of 10 for BI and 30 for PC are both around 0.7,

making it impossible to distinguish between BI and PC if we do not take into account the

structural capacity. The indices are not usable to examine the activated states of neurons.

A
c
c
u

ra
c
y

Structural Capacity

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50 60

PC

BI

A
c
ti
v
a
te

d
 N

e
u

ro
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

PC

BI

Structural Capacity

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

21

Therefore, we will study if there is an appropriate indicator to be derived from the internal index

of NC. As a set of data (a sample), in the test dataset, leads to a collection of neuron coverages,

we can obtain some statistics from the sample such as the mean μ and variance σ2, and

calculate σ/μ. Figure 4.4 shows the case where this derived index σ/μ is used on the

horizontal axis. From the values on the vertical axis, we can find out which leaning model has

which value by referring to Figure 4.3.

Figure 4.4 Derived index

Figure 4.4 shows that we can distinguish between the PC and BI. Although the internal index

cannot distinguish between the PC and BI with different capacities (Figure 4.3), a derived index

of σ/μ can discriminate between the PC and BI. We can see that the neuron coverage basically

contains a piece of useful information.

Next, Figure 4.5 is a scatter plot of classification probability using corrupted data for the

evaluation; the horizontal axis refers to the classification output by the BI and the vertical one

by the PC.

Figure 4.5 Classification certainty for corrupted data.

In Figure 4.5, a △ represents an output value for corrupted data, which is supposed to be

distributed on the dotted line passing through the origin, if we assume that the PC and BI output

the same value for the same data. In fact, it can be seen that □ selected from the test dataset

0.9

0.92

0.94

0.96

0.98

1

0 0.1 0.2 0.3 0.4

PC

BI

 / µ p

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Probability of BI

P
ro

b
a

b
ili

ty
 o

f
P

C

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

22

(without any corruption) mostly arranged on the dotted line. On the other hand, corrupted data

(△) are distributed along the solid line, indicating that the PC is a better classification certainty

than the BI. It implies that the BI, containing bugs in it, is less robust, although the accuracy

remains the same as that of PC (Figure 4.2).

The following experiment confirms that differences in robustness can be detected by using

an internal index (Figure 4.6).

Figure 4.6 Differences in internal indices

The corrupted data described above were input, and the internal index for each input was

plotted on the horizontal axis. The □ distributed in a group on the right side shows the results

of PC, and the ◇ distributed in a group on the left side shows the results of BI. The scatter plot

shows that (1) the value of the internal index of PC is large, and (2) the correlation between the

internal index and prediction probability (certainty of classification) is negligible (0.033). Next,

we calculate σ/μ, which is 0.0876 for PC and 0.2183 for BI. Figure 4.6 shows results that

corrupted data affect the robustness, and that the value of σ/μ is considered to have

correlations with the robustness.

Next, we conducted experiments to investigate how distorted training data affect the trained

DNN model. We plotted the accuracy for a test dataset common to all the cases. Thus, differences

in the vertical axis indicate a certain difference (distortion degree) in the training dataset used

for obtaining the trained DNN model (Figure 4.7).

Figure 4.7 Differences in training datasets.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

23

Figure 4.7 shows the two independent series for the PC (□) and BI (◇). From top to bottom

in a series of each measured points (from better to worse accuracy), a training dataset with a

larger distortion is used. Because the test dataset is common, the data shift of the test data is

relatively larger as the distortion degrees in the training data is larger. Furthermore, the accuracy

decreases as the shift becomes large. Figure 4.7 also shows that the value of the horizontal axis

(σ/μ) is clearly different between the PC (□) and BI (◇). It can be confirmed that the accuracy

and the robustness suggested by the σ/μ values are two independent perspectives.

From the above (Figure 4.7), the distortion in training dataset can be examined by the

method based on the accuracy. As is done in practice, the method based on the accuracy is useful

when checking the training dataset quality. On the other hand, if there is a possibility that other

factors such as faults in a training/learning program are involved (multiple defects are assumed),

it is desirable to examine the values of the internal and derived indices (σ/μ) at the same time.

4.4 Related work

Neuron coverage (NC) is a simple quantitative measure introduced in DeepXplore [20] as a

test coverage metric. In conventional software testing, test coverage is defined in terms of the

basic block of program codes, which is the statements executed by a given test input data. A

program is represented as a Control Flow Graph (CFG) whose nodes refer to executable

statements. In the simplest case, the criterion is whether or not a node in the CFG is contained

in an execution path induced by an input test, i.e., whether or not the statements are executed.

As a DNN model is represented as a network, a kind of graphs, metrics similar to those for CFG

can be introduced. The neuron coverage concerns whether neurons located at nodes are

activated (output values of these neurons exceed a specified threshold), which is comparable to

the C0 criterion defined on the CFG. DeepXplore assumes that high NC values refer to the

situations where high percentage of neurons are exercised by input data, and discusses how to

generate new test input data to increase the NC values.

Neuron coverage would be a straightforward idea analogous to the conventional test

coverage criteria. Later, satisfying the criteria, to achieve 100% in terms of NC, is found

empirically not difficult. New metrics are proposed to take into account correlations among

multiple neurons or those in different layers [22], which may be comparable to more elaborated

coverage metrics, such as C1 or the others, in conventional software testing.

The original NC is simple and easy to use as a metric to guide or control automated test

generation processes. Usually, a classical data augmentation method picks up a seed data, from

which a series of new data is to be generated by pre-defined data transformation algorithms.

New test data are successively generated until the accumulated NC values is saturated. When

reached the situation where no increase in the NC is seen, the generation method switches a seed

data to new one and continue the process [23]. The classical data augmentation method can be

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

24

replaced by other approaches such as test input generation based on GAN [24]. Test generation

method using GAN with a help of NC is reported in [25]. Although it is a simple metric, NC is now

considered as a practical criterion to control the automated test generation process (coverage-

guided test generations).

Some of early works on testing pre-trained DNN models adapt application-specific

properties as software test oracles; the DNN models for regression tasks in the auto-pilot car

application [23][24] use the calculated steering angle as the oracle. There is also a research work

[26] to investigate whether test inputs to increase the NC values are useful for detecting faults.

The usefulness of NC is dependent on what are considered failures. The work [26] also indicates

that the correlation between NC and external indices such as the accuracy is weak. In this chapter,

based on this observation that the correlation between the two is weak, an internal index based

on the NC is used for the test, which is not contradictory to the discussion in [26], but rather in

the same direction. Note that the test coverage is a criterion for terminating testing, while

detecting faults depends on whether the test input data executes corner cases. These two notions,

the test coverage and corner cases, refer to different aspects. In fact, it has been reported that

the enhancement of coverage does not necessarily leads to the improvement of the efficiency of

fault detection in conventional software testing. The same findings would be applicable to cases

of DNN testing.

In this chapter, we use the NC value as a simple test index, from which a sort of distortion

degrees in trained DNN model is derived [19][21]. Our approach is based on a view that faults

in DNN models appear as inappropriate NC values, whereas existing works use NC as a criterion

for the test coverage. In our experiments, we were able to examine the reliability of the training

and learning programs and the robustness of the trained DNN models. These are two primary

concerns in debug-testing.

4.5 Conclusion

In this chapter, we used an internal index based on the neuron coverage (NC) defined on the

penultimate layer for representing a sort of distortion degrees in trained DNN model. The NC is

a scalar and easy to measure, and thus can be used as a light-weight test index. It, however,

discards the information about the individual activated neurons, and thus lacks useful

information. In fact, Kim et al. [27] proposes a method to estimate the distribution of activated

neuron and to discuss the usefulness of input data for testing. Distribution on such neuron values

may be considered to have rich information. In future, we will study how to debug training

dataset by making use of such distribution information.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

25

5 Debugging and Testing of Training Data

5.1 Three Problem Settings

In early stages of software development, in which programs are constructed to employ Deep

Neural Networks (DNNs) [28], debugging and testing is performed to ensure that the core DNN

components behave as expected. This is the process of feeding appropriate data to the DNN

components and checking whether the predicted output is exactly what is expected. If the output

is faulty in some ways, the DNN component under test contains a defect. The purpose of

debugging is to identify and remove such unknown defects.

Defects in DNN components are the direct cause, but not the root cause, of failures. In the

standard method for building DNN components [29], three distinctive components are basically

involved: (a) the machine learning infrastructure, (b) the training model (a template of the DNN

model), and (c) the training data. The root cause is one of them or their certain combinations

leading to the failure that the DNN component exhibits. The problem setting of the inspection

differs depending on where the root cause is assumed [30].

 The basis of DNN component construction is to make use of a training dataset consisting of

a huge number of training data and derive the information inherent in those data by means of

statistical methods so as to obtain a DNN model (a nonlinear function) inductively. In a naive

way, we may examine the DNN model to identify root causes. However, since the DNN model is a

nonlinear function to exhibit some functional behavior, the software testing method using

indirect test oracles is often employed; we feed evaluation data to the DNN model and check

whether output results are valid or not [31].

 In the case (a) above, the core of the machine learning infrastructure is a numerical program

that solves an optimization problem, and the metamorphic testing method is known to be useful

[32]. In the case (b), the learning model is not obviously flawed. It is to find an optimal or sub-

optimal learning model for the target machine learning task, which has been, in a sense, one of

the main challenges of the DNN technology [28]. In this chapter, we discuss the case (c), i.e.,

debugging and testing methods of training data.

5.2 Debugging Problems of Training Data

Debugging and testing of training data is to revise (add or delete) the training data so as to

obtain a DNN model that exhibits the intended functional behavior. This view is based on the

observation that the bias of the training data affects much the trained DNN model. In the

following, we specifically consider the debugging problem of training data for supervised

machine learning classification tasks.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

26

 Model Accuracy and Model Robustness

In the supervised task of classifying input data into 𝐶 categories, a datapoint 𝑧 is a tuple

(𝑧 = 〈𝑥, 𝑦〉) consisting of two types information, a multidimensional vector 𝑥 and its correct

answer tag (or simply a label) 𝑦 (see Figure 5.1). The DNN model, derived from a given

training dataset 𝑆 (𝑆 = {𝑧(𝑘) | 𝑘 = 1, … , 𝑁 }), is inspected against input evaluation data 𝑥. Its

output is a 𝐶 dimensional classification probability vector 𝑃𝑥 corresponding to the data 𝑥. If

𝑃𝑥[𝑗] (the 𝑗-th component of 𝑃𝑥), the component with the largest value 𝑗, is equal to y (𝑦 =

argmax(𝑗∈[1,𝐶])𝑃𝑥[𝑗]), then the DNN model is considered to return a correct answer. In this case,

the multidimensional vector 𝑃𝑥, in particular, the probability of the 𝑗-th component 𝑃𝑥[𝑗], is one

of the good indicators of the model accuracy for the data 𝑥. For a collection of evaluation data

𝐸 (𝐸 = {〈𝑥(ℓ), 𝑦(ℓ)〉 | ℓ = 1, … , 𝑀 }), Accuracy is the number of correct answers (percentage of

correct answers) for the collection. In addition, the variability of the probabilities of the

classification categories (sometimes referred to as Gini Impurity) is an indicator of the model

accuracy as well.

The accuracy for the training dataset 𝑆 and the one for the other dataset 𝐸 , different

dataset from 𝑆 , are compared. While the accuracy for 𝑆 is good, the accuracy is sometimes

worse for 𝐸. This phenomenon is known as overfitting to the training dataset. Usually, both 𝑆

and 𝐸 are constructed from one large data pool 𝐷 , and are considered as different samples

following the same data distribution; 𝐸 in this case is sometimes called a testing dataset as

compared with the training dataset of 𝑆. When there is no overfitting where the accuracies are

not much different each other, the DNN model is considered to exhibit good generalization

performance.

In the training data debugging problem, the evaluation data 𝐸 may be selected from a

dataset other than 𝐷 . For example, in positive testing, where the goal is to confirm that the

system exhibits the expected behavior, as in the evaluation of generalization performance, we

can choose 𝐸 from 𝐷 , in which 𝐸 is different from 𝑆 . However, to test the behavior in

exceptional situations, we may choose a dataset 𝐹 for the evaluation that is not included in 𝐷.

Model accuracy, measured with the percentage of correct answers, is not a good indicator for 𝐹.

The evaluation criterion is model robustness, which expresses how the prediction probability is

decreased depending on how much a data in 𝐹 is deviate from data in 𝐷 or 𝑆.

In the development in practice, if the expected prediction performance is not achieved for a

given 𝐷, new data is collected and the training data itself is revised. Then, the DNN components

are derived using the new training dataset, namely in an iterative manner. Moreover, during

testing, we evaluate the model accuracy and model robustness in view of both positive and

exceptional testing.

 Memorization of Training Data

Overfitting or overlearning significantly affects the prediction performance (the model

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

27

accuracy and model robustness) of DNN models. Therefore, basic machine learning methods

have been studied extensively to mitigate those problems; the study includes regularization or

dropout [33]. In spite that such methods are adopted, the expected prediction performance

cannot be obtained if the training dataset is inadequately biased. The debugging problem of

training data is to improve the prediction performance of DNN models by revising the training

dataset. Simply, it is to eliminate the inappropriate bias. However, it is difficult to evaluate the

degree of bias as well as the appropriateness or inappropriateness of the bias.

One traditional approach to evaluate the bias of the training data (sample) is to examine

statistical characteristics of the sample. For example, given that 𝑆 = {〈𝑥(𝑘), 𝑦(𝑘)〉 | 𝑘 = 1, … , 𝑁 } ,

let 𝑆𝐶 = {〈𝑥, 𝑐〉 | 〈𝑥, 𝑐〉 ∈ 𝑆 and 𝑐 = 1, … , 𝐶 } where 𝑐 is a correct answer tag. If the sizes of 𝑆𝐶

are equal in size, then we may say that there is no bias among 𝑆𝐶 from the viewpoint of the

correct answer tag. However, each 𝑆𝐶 follows some data distribution 𝜌𝐶 and we don't know

whether 𝑆𝐶 is sampled faithfully in regard to 𝜌𝐶 . To check this, we need to know 𝜌𝐶 , however,

the data 𝑥 is multidimensional, and such a multidimensional data distribution is not easy to

estimate.

Alternatively, the prediction performance of DNN models is investigated by testing results

with input evaluation data. DNN models derived from the same training data may exhibit

different prediction performance, depending on the method of the machine learning. In other

words, it is not enough to examine the statistical characteristics of the training data for the

purpose of debugging the training data, but it is also necessary to consider how the bias of the

training data is reflected in the trained DNN model.

The relationship between DNN models and training data bias can be discussed in terms of

the DNN models remembering the labels of the training data. Now, when the training data 𝑆

contains a datapoint 〈𝑎, 𝑡〉 (〈𝑎, 𝑡〉 ∈ 𝑆), we can construct 𝑆′ so that the 〈𝑎, 𝑡〉 is removed from

the training data 𝑆 (𝑆′ = 𝑆 ∖ {〈𝑎, 𝑡〉}). Let each DNN model obtained by training with either 𝑆

or 𝑆’ be 𝑀 or 𝑀’ respectively. Then, the result, 𝑃𝑎 for 𝑀 or 𝑃𝑎
′ for 𝑀’, is obtained for the

common input data 𝑎 . If the classification result 𝑡 for 𝑃𝑎[𝑡] is very likely and 𝑃𝑎
′[𝑡] is less

likely, then 𝑀 is said to memorize the datapoint 〈𝑎, 𝑡〉 used as one the training data. From this

definition, we can see that the DNN model memorizes the training data in the overfitting

situation, where 𝑃𝑎[𝑡] is apparently more likely than 𝑃′𝑎[𝑡].

For DNN models, it is known that the Membership Inference is possible. The problem is to

find out if a datapoint 〈𝑥, 𝑦〉 (〈𝑥, 𝑦〉 ∈ 𝐷) was included in the training dataset (〈𝑥, 𝑦〉 ∈ 𝑆) just

from the information obtained by feeding data to the trained model, 𝑀𝑆(𝑥). Black box methods

make use of the classification probability vector 𝑃𝑥 [34], or white-box methods use the

information of the loss function ℓ(𝑌(𝑊; 𝑥), 𝑦) calculated in the process of executing 𝑀𝑆(𝑥)

[35], where 𝑊 is the training parameter or weight and 𝑌(𝑊; 𝑥) is the internal representation

of the prediction for the input 𝑥.

Intuitively, Membership Inference method is based on the observation that the distribution

of 𝑃𝑥 or ℓ(𝑌(𝑊; 𝑥), 𝑦) is different depending on whether the datapoint 〈𝑥, 𝑦〉 is included in

the training dataset 𝑆 or not. Furthermore, these differences in the distributions are somehow

attributed to the memorization of training data including overfitting cases [35]. Thus, the

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

28

approach to mitigate the threats of Membership Inference is to remove those data, that are

memorized easily, from the training dataset, in addition to employing a machine learning

method that avoids overfitting [36].

We now examine the situation involved with the memorization of training data. Consider a

classification problem as in Figure 5.1; we assume 𝑎 ≠ 𝑏 whereas 𝑡 = 𝑢 . Figure 5.1 (a)

illustrates a situation where the prediction probability of 〈𝑏, 𝑢〉 , a training data moved away

from 〈𝑎, 𝑡〉, decreases as the distance between them becomes large. Figure 5.1 (b) shows that

removing that datapoint 〈𝑎, 𝑡〉 from 𝑆 does not significantly affect the prediction probability

of the data 〈𝑏, 𝑢〉 when the training data are dense in 𝑆. In other words, the removed training

data is not memorized in that it does not significantly affect the prediction results. Figure 5.1 (c)

represents a situation where the training data are sparse. Contrary to Figure 5.1 (b), it represents

that the influence becomes large and is firmly remembered. Such outlier data significantly affects

the predictive classification performance of the DNN model.

Finally, we consider the Membership Inference viewed from the training data debugging

problem. In the situation where training data are memorized, the distribution of either 𝑃𝑥 or

ℓ(𝑌(𝑊; 𝑥), 𝑦) is very different depending on whether the datapoint is included in the training

dataset 𝑆 or not. The Membership Inference method makes use of the fact that the predictive

performance for 𝑧′, far from training 𝑧 datapoints, is poor. In other words, we can think of the

Membership Inference as a test of model robustness; the phenomenon of training data

memorization is related to model robustness.

(a) Predicted probability in the neighborhood (b) Dense region (c) Sparse region

Figure 5.1 Training data placement and prediction certainty.

Here, we refer to the schematic situation in Figure 5.1. Removing the dense data shown in

Figure 5.1 (b) would have little impact on the model accuracy. On the other hand, removing the

data in a sparse region as shown in Figure 5.1 (c) would improve model robustness, but would

reduce model accuracy in the neighborhood because there would no longer be data to support

their predictive classification results. Alternatively, adding new data in the neighborhood

without removing this datapoint will make the region dense and improve the local model

accuracy. Therefore, detecting outliers in the training data set 𝑆 is important for debugging

dataset.

Figure 5.1 schematically illustrates that the predictive classification performance of the input

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

29

data is affected by the location relationship with the training data. However, it does not say how

the location relationship is defined, i.e., from what aspects of the data, the location relationship

is defined. Conversely, now the question is how the location relation should be defined when

discussing the difference in prediction classification performance; the outlier detection problem

will become clear when such criteria are precisely defined.

5.3 Outliers and Neuron Coverage

We consider outlier detection methods for the purpose of training data debugging.

 Outliers in Training Data

The debugging problem of training data is to find out outliers in the training dataset and to

decide how to deal with the outliers according to the purpose of the DNN model under

development. How we handle the outliers is related to the requirements specification of the DNN

model. Thus, the general discussion of training data debugging may be limited within

establishing a technique for outlier detection.

In general, outliers are data that have different characteristics from the data that make up

the majority, and whether or not they are outliers is defined based on the data distribution

(statistical data model) that the collection of target data exhibits [37]. For example, if the

probability density function of the data distribution is known, then we can check whether the

data are outlier or not based on the likelihood of the data.

In a naive way, we consider whether it is an outlier or not based on the empirical distribution

of the training data. However, the training data is a multi-dimensional vector, and it is difficult to

know the empirical distribution in a compact form. For example, it is difficult to apply methods

such as Kernel Density Estimation, and as a result, the outlier detection method based on

likelihood is not practical. Alternatively, analysis methods similar to Combination Testing, which

is known in the field of software testing, may be applied. By selecting components (features) that

are considered having a large impact on the empirical distribution and focusing on such

representative dimensions, we may conduct analysis as an approximate of the case on the whole

empirical distribution. While practically applicable, outliers are rare by definition, and the

effectiveness of this approximate method is questionable.

For a slight change of perspective, the robustness radius of the standard method of analyzing

model robustness [38] is considered. For two datapoints 〈𝑥, 𝑦〉 and 〈𝑥′, 𝑦′〉 and the predictive

classification results for each of the outputs 𝑃𝑥[𝑦] and 𝑃𝑥′[𝑦′], let the robust radius 𝛿 be the

tolerance level 휀 of the difference between the outputs; for a given 휀, the robust radius is the

maximum difference of input data that satisfies 𝛿 (| 𝑃𝑥[𝑦] − 𝑃𝑥′[𝑦′] | ≤ 휀 when | 𝑥 − 𝑥′ |𝑝 ≤

𝛿). Here, we define the difference of input data in terms of 𝐿𝑝-norm. In a naive way, for a given

휀 for given input data, we consider that the model robustness is good if the robustness radius 𝛿

is large. However, the calculated radius 𝛿𝑝 is dependent on the choice of the norm 𝐿𝑝. While

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

30

the definition of model robustness by the robust radius is strict, the analysis in the space of input

data requires further discussion or interpretation of whether the norm used is appropriate or

not, which complicates the problem.

We consider now how the training data 〈𝑎, 𝑡〉 affect the prediction results of the other data

〈𝑏2, 𝑢2〉 that are classified to different classification categories (𝑡 ≠ 𝑢2) (see Figure 5.1 (a)). The

two datapoints have different classification categories and can be assumed to be far apart in the

input data space. We assume that the training dataset 𝑆 contains 〈𝑎, 𝑡〉 and let 𝑆’ be the one

to be removed 〈𝑎, 𝑡〉 from 𝑆. Further, let the DNN models obtained from 𝑆 and 𝑆’ be 𝑀 and

𝑀’ respectively, and let the predictive classification results for the data 〈𝑏2, 𝑢2〉 be 𝑃𝑏2 and

𝑃𝑏2
′ . With the method of Influence Functions, which analyzes how 𝑆 and 𝑆’ affect the error

function, we are able to know that there exists 〈𝑏2, 𝑢2〉 such that the values of 𝑃𝑏2[𝑢2] and

𝑃𝑏2
′ [𝑢2] are different [39]. It shows that the presence or absence of the training datapoint 〈𝑎, 𝑡〉

affects the classification probability of 〈𝑏2, 𝑢2〉. Therefore, it is difficult to obtain the desired

information by analyzing the differences in the input data space (𝑎 ≠ 𝑏2) .

From the above, we can see that it is difficult to systematically detect the desired outliers by

analyzing a collection of training data in the input data space. The reason for this is that model

accuracy and model robustness are affected not only by the training data but also by various

factors involved in the training process, such as the machine learning method. However, we do

not claim that the analysis in the input data space is completely ineffective. Such an analysis

would give us a vague idea of the empirical distribution of the training data.

In this chapter, we think that even if the features of the input data space are related to model

accuracy and model robustness, they are not appropriate as a systematic training data

debugging method. We will study systematic methods for detecting outliers in training data.

 Active Neurons

Neuron coverage is defined as the ratio of active neurons to the number of target neurons

considered [40]. 𝑀𝑆(𝑥) denotes the situation where the input signal (of x) propagates through

the DNN model and activates each neuron. When the output of a particular neuron exceeds a

given threshold, we call it active, an active neuron.

Neuron coverage was initially proposed as a coverage criterion for coverage-driven test data

generation [40]. The active neurons for the input data 𝑥 provide a useful information in that

they influence the output results. On the other hand, the neurons not involved in the predictive

inference process, are considered to be inactive. The input data that produce inactive neurons

do not effectively test all the neurons, and then new input test data are needed so that they

further activate the inactive neurons. When a set of input data makes all the neurons active, the

set of test data are considered to reach 100% of the coverage.

After the original proposal in [40], there have been several research works to study the

practical usefulness of the neuron coverage as a test coverage criterion [41][42][43]. In

particular, it has been recognized that 100% of the neuron coverage is not difficult to achieve

and thus is weak as a test coverage criterion, which is similar to the case of the C0 criterion in

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

31

conventional software testing methods.

On the other hand, we may consider that the training was appropriate in the first place,

producing inactive neurons not involved in the predictive inference process. In this case, we can

add new input data to the training data and conduct re-training [40]. This suggests the idea of

using the neuron coverage as a criterion for evaluating the quality of the model 𝑀𝑆 . The

following is a discussion from the viewpoint of the neuron coverage as a model quality

evaluation criterion [44].

In DNN models 𝑀𝑆 for classification tasks, the upstream layers near the input perform

encoding 𝐸′ (Encoding), and is followed by classifying 𝐶′ . Classifying is done after the

encoding (𝑀𝑆 = 𝐶′ ∘ 𝐸′); 𝑀𝑆(𝑥) = (𝐶′ ∘ 𝐸′)(𝑥) = 𝐶′(𝐸′(𝑥)). When the output is a classification

probability vector, we place softmax functions in the final layer (logits) of the output; 𝑀𝑆 =

SOFTMAX ∘ 𝐶 ∘ 𝐸′. Next, we may place a layer of Fully Connected Network (FCN) between 𝐸’

and 𝐶; 𝑀𝑆 = SOFTMAX ∘ 𝐶 ∘ FCN ∘ 𝐸.

In FCN, a neuron in a layer considered is connected to all the neurons in the next layer, thus

the output is swap-invariant, which means that the output is preserved when the neurons are

exchanged within the same layer. Therefore, the neuron coverage may be useful to summarize

the neuron activity in FCN layers. On the other hand, when the constituent neurons play a

specific functional role, such as in SOFTMAX or CNN, it is questionable whether the neuron

coverage, which considers all neurons equally, provides useful information. In fact, two different

definitions are studied for CNNs, and depending on which one is adopted, the value of neuron

coverage is different [45]. In this chapter, we consider neuron coverage for the FCN layer.

A series of experiments are conducted [45] in which training data are systematically

generated by means of a classical data augmentation method and the effects on neuron coverage

are investigated. The results showed that the difference in training data had influenced the

neuron coverages at the 𝐸′ layer, while only a small effect was made on the 𝐶 layers. In addition,

although the testing data are changed, very small differences are observed on the last layer in 𝐶

(Penultimate Layer of the whole model). It implies that the differences in the training data are

reflected in the FCN layer where 𝐸′ = FCN ∘ 𝐸 as introduced early.

In addition, in previous experiments [32][44][46] in which we have measured the neuron

coverage on the FCN located as the last layer of 𝐶, we observed little correlation between the

classification prediction probability and neuronal coverage. Therefore, the neuron coverage may

be considered to represent an aspect independent of the information contributing to the model

accuracy. If it is found to be correlated with the model robustness, we can expect that the

neuronal coverage on a particular layer is useful as a method to detect outliers for our purposes.

5.4 Experiments and Discussions

In our experiments, we used the machine learning model such that 𝑀𝑆 = SOFTMAX ∘ 𝐶 ∘

FCN ∘ 𝐸 , and the MNIST dataset. In particular, the training dataset 𝑆 was entered as the

evaluation input, and the neuron coverage at the FCN layer was measured, whose results are

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

32

shown in Figure 5.2.

Figure 5.2 (a) shows the frequency distribution of the neuron coverage for the input data

(the result of KDE). Figure 5.2 (b) is a scatter plot of the neuron coverage of the input data on the

horizontal axis and the prediction probability of the same input data plotted on the vertical axis.

The red dots represent the data with correct predictions and the blue dots represent the

incorrect one. The correct prediction rate of the training data and the test data were both 99%.

(a) Neuron coverage vs data frequency (b) Neuron coverage vs prediction probability

Figure 5.2 Analysis results of training data

Figure 5.2 (a) shows that the neuron coverage in the FCN layer is distributed between 0.38

and 0.84, and the median and mean values are 0.60. In Figure 5.2 (b), we confirmed again that

there is almost no correlation between the neuronal coverage and the predicted classification

probability. While there is a large difference in neuron coverage (between 0.38 and 0.84) , it can

be considered that the magnitude of the contribution to prediction classification differs

regardless of whether the answer is correct or incorrect. In other words, the neuron coverage

takes a large value even when the contribution to being incorrect may be large.

In Figure 5.2, the area circled by the ellipse, for example, represents the training data with

larger-than-average neuron coverage, resulting in a significant impact on the output, leading to

the observed classification probabilities. Therefore, it can be considered to be a faithful

representation of the characteristics (classification probabilities) of the target data. Suppose

that we chose training data with smaller-than-average neuron coverage. According to Figure 5.2

(b), the predicted classification probabilities of the outputs are scattered, which is similar to the

case for the elliptical regions in Figure 5.2 (b), while it is not certain that the small neuron

coverage had an appropriate impact on the output. In other words, those training data may be

considered not to play significant roles to obtain 𝑀𝑆. In this chapter, we consider the training

data that has small neuron coverage, regardless of the predicted classification probability, to be

an outlier.

We now sort the training data based on the neuron coverage and create training datasets

𝑆(𝐾) of the same size. Then, we use 𝑆(𝐾) to derive a trained training model 𝑀(𝐾) , and

evaluate 𝑀(𝐾) by means of a common dataset for the evaluation. In this experiment, the entire

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

33

sorted training data was studied, and no adjustments were made at the level of individual data.

(a) Median output value vs. test data frequency (b) Neuron vs. magnitude of displacement

Figure 5.3 Neuron activity vector

Figure 5.3 shows the results of the five trained models 𝑀(𝐾) (K = 1, …, 5), in the form of the

neuron activity vectors of the FCN layer, where the test dataset was used for the evaluation. The

neuron activity vector represents an internal feature, which is a multidimensional vector that

consists of the output values of the constituent neurons.

 The training datasets 𝑆(𝐾) (K = 1, …, 5) are those obtained by random selection, right-side

editing (replacing the training data enclosed in the ellipse in the Figure 5.2), left-side editing,

both-sides editing, random selection, and data augmentation after random selection. These

correspond to the bar graph from left to right in Figure 5.3 (a). The accuracies are 97.14%,

96.89%, 96.90%, 96.94%, and 95.81%; there is no significant difference except for the 𝑀(5). The

fact that there is no difference from 𝑀(1) to 𝑀(4) is consistent with the way that the training

data sorting method (see Figure 5.2 (b)). In addition, because data augmentation is applied to

obtain 𝑆(5) and thus its distribution characteristics are somewhat different from those of the

test dataset used.

Figure 5.3 (a) shows bar graphs, and each bar represents the number of test data for which

the median of the vector components is within the range of values on the horizontal axis. It

represents that most of the test data have a small median value and thus a small contribution to

the predictive classification result. In addition, the data distribution in the 𝑆(𝐾) differs, where

𝑆(1) can be considered to follow the distribution of the original training dataset 𝐷 because it is

randomly selected. In Figure 5.3 (b), we consider this 𝑆(1) as a reference, and for each

component of the neuron activity vector, we show the difference between the case of 𝑆(1) and

the others. As the difference is large, the effect by the deviation from the 𝑆(1) distribution (and

thus the original 𝐷) is large. In other words, it suggests that the effect of training data editing is

large.

 From the above, it can be said that the training data could be re-arranged and crafted, based

on the neuron coverage, in such a way that the effect on the model accuracy is minute while the

discrepancy of the neuron activity vector is apparent (Figure 5.3 (b)). For example, 𝑆(3) is the

result of left-side editing, in which the training data with small neuron coverage were removed.

Qualitatively, Figure 5.3 implies that 𝑆(3) is considered to have contributed to the removal of

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

34

outliers. In order to discuss further quantitatively, it is necessary to establish an empirical test

method standardized, a kind of test-time augmentation method, for the model robustness.

5.5 Conclusion

In FY2021, we studied debugging and testing methods of training data for the case where

bias in training data is the root cause of defects. Here, defects are judged from two quality

characteristics, the model accuracy and model robustness. In general, it is necessary to debug

training data considering that these two characteristics have a trade-off relationship. In the study,

the main points of the training data debugging method are studied in view of the notions

obtained for the membership inference, which has been discussed in the context of privacy

quality characteristics, and attributed to the problem of outlier detection. However, how to

define outliers is non-trivial. We proposed a method to estimate outliers in training data by

computing the neuron coverage from the activated states inside the model and extracting the

outliers from the bias in the distribution of the neuron coverage values. Experiments showed

that the proposed method might provide a piece of information to aid debugging of training data.

In the future, we will establish a method to detect outliers for the purpose of training data

debugging through refining the experiment methodology presented here and conducting

experiments systematically. Furthermore, we will study methods to conduct debugging from the

viewpoints of both model accuracy and model robustness.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

35

6 Evaluation and Improvement of Robustness

In this chapter, robustness means the ability that a machine-learned model keeps correct

output even when noise is added to input (including adversarial examples). For example, it

evaluates how much noise can be added to the model without changing the correct results. One

of the measures of its robustness is the maximum safe radius (MSR). In this chapter, we explain

adversarial example and the maximum safe radius in a classifier based on a feedforward neural

network, and then report the results of a survey on techniques for estimating and increasing the

maximum safe radius.

6.1 Robustness measure (maximum safe radius)

It is well known that machine-learned models on inference programs mis-classify input data

even when very small perturbations are added. Such perturbated data are called adversarial

examples [47], and adversarial examples have been actively researched in recent years. The set

𝐴𝑑𝑣𝛿(𝑥) of all adversarial examples contained in the 𝛿 -neighborhood (inside the sphere of

radius 𝛿 ∈ ℝ, where ℝ is the set of real numbers) of the input data sample 𝑥 ∈ ℝ𝑛 is defined

as follows:

𝐴𝑑𝑣𝛿(𝑥) = {𝑥′ | ‖ 𝑥 − 𝑥′‖ ≤ 𝛿 ⋀ 𝑓(𝑥) ≠ 𝑓(𝑥′)},

where 𝑓(𝑥) is a function representing the machine-learned model that takes the input sample

𝑥 and return the classification, and ‖𝑥 − 𝑥′‖ is the distance between two data samples 𝑥 and

𝑥′. The 𝑝-norm is often used to define the distance.

Figure 6.1 An adversarial example from an image of a panda, which is mis-classified into a gibbon

Adversarial examples are explained by Figure 6.1. The left side in Figure 6.1 shows the input

space to the neural network and the right side shows the output space from the neural network.

The center of the red sphere in the input space represents an original input image of a panda,

and the inside of the sphere, whose radius is 𝛿 , (i.e., 𝛿 -neighborhood of the original image)

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

36

represents the set of perturbated images obtained from the original image by adding noises

whose sizes are less than 𝛿. The set of outputs from the neural network for all the input images

in the 𝛿-neighborhood corresponds to the red region in the output space on the right. Here, a

part (lower-right) of the red region in the output side is beyond the decision boundary and is

mapped into the region of gibbons. It means misclassification, and the input images mapped to

the lower-right part are adversarial examples.

If there is no adversarial example in the 𝛿-neighborhood of the input data 𝑥 (i.e., inside the

sphere whose radius is 𝛿 and center is 𝑥), then 𝛿 is said to be the safe radius of 𝑥. Then, the

maximum safe radius of 𝑥, denoted by 𝑀𝑆𝑅(𝑥), is defined as follows:

𝑀𝑆𝑅(𝑥) = max {𝛿 | 𝐴𝑑𝑣𝛿(𝑥) = ∅}.

When the maximum safe radius of 𝑥 is large, it is difficult to generate adversarial examples.

Therefore, the maximum safe radius can be used as a measure of the robustness to input

perturbations, including adversarial examples, of machine-learned models.

The radius 𝛿 in Figure 6.1 is not a safe radius because some perturbated input images inside

the 𝛿 -neighborhood are misclassified into gibbons. On the other hand, 𝛿 in the following

Figure 6.2 is the maximum safe radius because all the input images inside the 𝛿-neighborhood

in Figure 6.2 are correctly classified.

Figure 6.2 The maximum safe radius 𝛿

6.2 A survey on methods for evaluation and improvement of robustness

Table 6.1 shows recent research papers on methods for evaluation and improvement of

robustness, where each small box in the table represents a research paper with reference and

the information on neural networks used in the experiments for evaluating the methods

proposed in the paper. The information is useful for comparing applicable scales of the methods.

Table 6.1 is categorized by the following perspectives:

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

37

Table 6.1 Methods for evaluation and improvement of robustness (MSR: Maximum Safe Radius)

 Evaluation of robustness Improvement of robustness

C
ertified

R
igo

ro
u
s

Rigorous estimation of MSR

Katz et al. 2017 (Reluplex) [48]

ACAS-XU-DNN, 300 ReLU nodes

6 hidden layers,

(Limitation: hundreds of nodes)

Tjeng et al. 2019 [49]

CIFAR-10, ResNet, 9-CNN, 2-layer,

107,496 ReLU units,

100~1,000 times faster than Reluplex

A
p
p
ro
xim

ative

D
eterm

in
istic

Estimation of a lower bound (LB) of MSR

Weng et al. 2018 (Fast-Lin) [50]

CIFAR, 6-layer, 12,288 ReLU units

About 10,000 times faster than Reluplex

Boopathy et al. 2019 (CNN-Cert)[51]

CIFAR-10 (32x32x3), 5-layer,

10 filters, 29,360 hidden nodes,

Faster than Fast-Lin

Training by detecting all the adversarial exes

Wong and Kolter 2018 [55]

SVHN (32x32x3), 2-conv, 32-ch,

100, 10 hidden units, ReLU,

(Non-applicable to ImageNet)

P
ro
b
ab
ilistic

Estimation of a probabilistic LB of MSR

Weng et al. 2019 (PROVEN) [52]

CIFAR, 5-layer, CNN, ReLU

almost same as CNN-Cert

Randomized smoothing after training

Lecuyer at el. 2019 [56]

ImageNet (299x299x3),

Inception-v3 + auto-encoder

Cohen at el. 2019 [57]

ImageNet (299x299x3),

ResNet-50 (50-layer)

Tighter certification than Lecuyer [56]

U
n
certified

Estimation of an upper bound (UB) of MSR

Carlini and Wagner 2017 [53]

ImageNet (299x299x3),

Inception-v3

Estimation of an approximation of MSR

Weng et al. 2018 (CLEVER) [54]

ImageNet (299x299x3),

ResNet-50 (50-layer)

Training by detecting near adversarial exes

Madry et al. 2018 [58]

CIFAR (32x32x3),

28-10 wide ResNet

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

38

– Columns in Table 6.1 (application):

➢ Evaluation of robustness by estimating MSR

➢ Improvement of robustness by increasing data samples with a specified MSR

– Row in Table 6.1 (certification and strictness):

➢ Certification of no existence of adversarial examples in 𝛿-neighborhood

 Rigorous estimation of MSR

 Approximative estimation of MSR

⚫ Deterministic (no adversarial example exist)

⚫ Probabilistic (the probability of no adversarial example is 𝜌%)

➢ No certification of no existence of adversarial examples in 𝛿-neighborhood

The methods in Table 6.1 are explained in the following Subsections 6.2.1~6.2.7.

 Certified and rigorous evaluation of robustness

Katz et al. [48] proposed a method, Reluplex, to verify that a machine-learned model satisfies

given properties. A demonstration tool that implements the method Reluplex has also been

released. Properties are constraints on input-output relations of machine-learned models, and

Reluplex can exhaustively and rigorously (soundly and completely) verify that there is no

adversarial example in the 𝛿-neighborhood of the input data sample. Therefore, the maximum

safe radius (MSR) can be estimated by checking the existence of adversarial examples by

changing the radius 𝛿 with binary search. Reluplex is an extended Simplex method (one of

solvers for linear programming problems) with rules for the ReLU function and it is implemented

by a satisfiability-checking tool (SMT-Solver) with a module for the theory of real numbers.

Reluplex is a powerful tool to verify properties in addition to robustness, but the computational

cost is expensive and the number of neurons it can verify is a few hundred ReLUs at most.

Tjeng et al. [49] proposed an efficient method for estimating maximum safe radii. Then, they

implemented the method on a mixed integer linear programming (MILP) solver and

demonstrated that the tool can exactly estimate the maximum safe radii of a neural network with

100,000 ReLU-type neurons. Although it is still difficult to apply the rigorous solver-based tools

to practical large-scale machine-learned models, the scalability is being improved.

 Certified, approximative, and deterministic evaluation of robustness

Weng et al. [50] proposed a method, Fast-Lin, to approximate the maximum safe radii of

ReLU-type neural network. Fast-Lin linearly approximates the output region with a polytope and

estimates an approximation δ that is slightly smaller than the maximum safe radius, as shown in

Figure 6.3. It is guaranteed that there is no adversarial example inside the 𝛿 -neighborhood

because the approximation δ does not exceed the maximum safe radius (i.e. sound). It means δ

is a safe radius and is a lower bound of the maximum safe radius (𝛿 ≤ 𝑀𝑆𝑅(𝑥)). It was reported

that Fast-Lin is 10,000 times faster than the rigorous method Reluplex by approximative convex

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

39

outer polytopes.

Figure 6.3 An approximation 𝛿 that is slightly smaller than the maximum safe radius (MSR)

Boopathy et al. proposed CNN-Cert, which is an improved version of Fast-Lin [51]. CNN-Cert

also supports convolutional networks including not only the activation function ReLU but also

sigmoid, tanh, and arctan, and it improves approximation accuracy and is faster than Fast-Lin.

 Certified, approximative, and probabilistic evaluation of robustness

Weng et al. [52] proposed a method, PROVEN, to approximate probabilistic maximum safety

radii. As shown in Figure 6.4, the probabilistic maximum safe radius 𝛿 with a probability 𝜌

means that there is no adversarial example inside the 𝛿-neighborhood with a probability 𝜌. In

other words, it permits the existence of adversarial examples with the probability (1 − 𝜌) .

PROVEN has been developed based on CNN-Cert, and the computational complexity has not

significantly increased from CNN-Cert.

Figure 6.4 An approximation 𝛿 that is slightly smaller than the probabilistic MSR with 𝜌

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

40

 Uncertified evaluation of robustness

Carlini and Wagner [53] proposed a method to detect the (almost) closest adversarial

example to the input data sample 𝑥 and estimate the distance 𝛿 as an approximative

maximum safety radius by using an existing optimization tool (Adam). However, it is not

guaranteed that the distance 𝛿 estimated by the method is the shortest distance to the

adversarial example, and there is a possibility that there are adversarial examples closer than

the distance. In other words, it is an upper bound of the maximum safe radius (𝑀𝑆𝑅(𝑥) ≤ 𝛿).

Although it is not guaranteed that the distance δ estimated by the method is a safe radius, it is

often used for evaluation in recent papers on robustness as a measure of the maximum safe

radius.

Weng et al. [54] proposed the method CLEVER to estimate an approximate maximum safe

radius as an evaluation measure of robustness independent of attack methods. It was reported

that the method could be applied to relatively large neural networks and the image recognition

model Inception-v3 was evaluated in about 10 seconds. The method estimates an approximative

maximum safe radius based on the maximum effect in output caused by small changes in input,

where the maximum effect is approximated by the extreme value theory. As shown in Figure 6.5,

the estimated value 𝛿 can be larger than the maximum safe radius, and thus there is a

possibility that adversarial examples exist inside the 𝛿-neighborhood (i.e., it is not guaranteed

that 𝛿 is the safe radius).

Figure 6.5 An approximation of the maximum safe radius (uncertified)

 Certified, approximative, and deterministic improvement of robustness

Wong et al. [55] proposed a method (robust training) to train such that the maximum safe

radius of each data in the training dataset to be a specified value 𝛿. Although this method does

not guarantee that the maximum safe radius δ is obtained for every training data sample after

training, it also gives a method to estimate an approximative value (a safe radius) of the

maximum safe radius for each input data sample. In the robust training, neural networks try to

learn such that they correctly make inferences for not only training data samples but also the 𝛿-

neighborhood of every sample.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

41

A sketch of the robust training is shown in Figure 6.6, where the black dotted line in the

output space represents the decision boundary learned by a normal training, and the red solid

line represents the decision boundary learned by the robust training. The six training data

samples in the input space are correctly classified by both the boundaries, but some data in the

𝛿-neighborhood of each sample are misclassified by the dotted boundary (normal training). On

the other hand, data in the 𝛿 -neighborhood of each sample are also learned in the robust

training as shown in the red boundary. The robust training can guarantee some safe radii, but it

is difficult to apply the training to practical large scale neural networks due to the low scalability.

Wong et al. [55] reports that the robust training was successfully applied to the datasets of

images, MNIST (28 × 28) and SVHN (32 × 32) but was not applicable to ImageNet (256 × 256).

Figure 6.6 Robust-trining by input data with 𝛿-neighberhood

 Certified, approximative, and probabilistic improvement of robustness

Lecuyer et al. [56] proposed a method to estimate maximum safe radii that can be

probabilistically guaranteed by randomized smoothing. In the randomized smoothing, the

inference for the same input is repeated in a neural network where a noise layer is added after

training, and the final output is the average of the outputs obtained by the repeated inferences.

A sketch of the randomized smoothing is shown in Figure 6.7, where the black dotted line in

the output space represents the decision boundary without randomized smoothing, and the red

solid line represents the decision boundary with randomized smoothing. The randomized

smoothing of Lecuyer et al. [56] improves robustness by smoothing decision boundaries with

certification of safe radii and has been successfully applied to guarantee the robustness of

machine learned models for large-scale input data such as ImageNet (299 × 299 × 3). When the

variance of the added noise is increased, the guaranteed safe radius also increases, but on the

other hand, the correctness (e.g., accuracy) decreases. Lecuyer et al. [56] applied the technique

of differential privacy, where the output for two similar inputs is made statistically

indistinguishable, to clarify the relations between certifiable approximative probabilistic

maximum safe radii, the standard deviation of noise, the number of inferences, and so on.

Cohen et al. [57] proposed a randomized smoothing based method that can estimate tighter

certifiable approximative probabilistic maximum safe radii than one of Lecuyer et al. [56].

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

42

Although randomized smoothing needs repeated inferences (tens or hundreds of times

experimentally) for an input, it can probabilistically guarantee robustness even for large-scale

networks.

Figure 6.7 Improvement of robustness by randamized smoothing

 Uncertified improvement of robustness

Madry et al. [58] proposed a method (adversarial training) to train such that maximum safe

radius of each data in the training dataset to be a specified value 𝛿. In the adversarial training,

samples to be potentially adversarial examples in 𝛿-neighborhood are detected during training

and are also used as training data. Compared to the robust training of Wong et al. [55], the

adversarial training cannot guarantee robustness, but it is more applicable to larger networks.

In addition, compared to randomized smoothing, the adversarial training does not require

repeated inferences.

6.3 Conclusion

In general, improvement of robustness tends to decrease accuracy, and currently accuracy is

often more important. However, if robustness is not considered, accuracy may rapidly decrease

even by small input perturbations. Therefore, robustness is important in critical systems. The

methods related to the maximum safe radius, which is a measure of robustness, explained in this

chapter have been proposed recently, and environments for applying such methods have not

been established well yet. Since such methods have been experimentally applied also to practical

machine learned models, we think that the maximum safe radius can be one of measures of

robustness in a few years.

...

...

...

...

...

Neural network

Outputinput

noise for smoothing

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

43

7 Generalization Bounds of Machine-Learned Models

In this chapter, we briefly introduce well-known theorems on generalization bounds, that are

the expected values of the error rates of machine-learned models for all input data, and we show

some computational results obtained by applying the theorems. We are aiming at guaranteeing

the behavior of machine-learned models even for unseen input data.

7.1 Generalization bounds

In this chapter, we model machine-learned neural networks as shown in Figure 7.1, with the

input-output relations. In particular, we focus on feed-forward neural networks trained as

classifiers by supervised deep learning and denote the input-output relation as a function 𝑦 =

𝑓𝑤(𝑥), where 𝑥 and 𝑦 are an input and the correct output, respectively, and 𝑤 is the weights

(training parameters) on connections between neurons in the neural network. In the field of

statistical learning theory, the function 𝑓𝑤 is often called a hypothesis, but it is called a machine-

learned model in this chapter, as in the other chapters. Since a neural network can express

multiple machine-learned models 𝑓𝑤 by adjusting weights 𝑤 ∈ 𝒲 , the set of expressible

machine-learned models 𝑓𝑤 in the network is denoted by ℱ. Hence, Machine learning means to

select a machine-learned model 𝑓𝑤 from ℱ by a training algorithm such that 𝑓𝑤 fits the

training dataset. The model 𝑓𝑤 can be denoted by 𝑓 when the parameter 𝑤 is not important.

Figure 7.1 Generalization error and empirical error

The generalization error 𝐿(𝑓𝑤) of the machine-learned model 𝑓𝑤 (a classifier) is the

expected value of the error rate of 𝑓𝑤 for every pair (𝑥, 𝑦), of an input 𝑥 and the correct output

𝑦, randomly selected according to the distribution 𝒟, and is defined as follows:

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

44

𝐿(𝑓𝑤) = 𝔼(𝑥,𝑦)~𝒟[𝕀(𝑦 ≠ 𝑓𝑤(𝑥))],

where 𝕀(𝑏) is the following indicator function, that returns 0 if 𝑏 is true and returns 1

otherwise, and therefore 𝕀(𝑦 ≠ 𝑓𝑤(𝑥)) is the 0-1 loss function:

𝕀(𝑏) = if (𝑏 = true) then 1 else 0.

For example, at the top left in Figure 7.1, the input space, that is drawn in 2 dimensions for

simplicity but exactly has 784 dimensions, means “the distribution 𝒟 of images (28 × 28 =

784 pixels with 256 grayscale) looking like numbers.” In this case, the generalization error is

the expected value of the error rate of 𝑓𝑤 for every image looking like numbers. Here, note that

it is not the error rate for all the (256784) images in the input space.

The empirical error �̂�𝑆(𝑓𝑤) of the machine-learned model 𝑓𝑤 is the error rate of 𝑓𝑤 for 𝑚

input data samples in the dataset 𝑆~ 𝒟𝑚 selected according to distribution 𝒟:

�̂�𝑆(𝑓𝑤) =
1

𝑚
∑ [𝕀(𝑦 ≠ 𝑓𝑤(𝑥))]

(𝑥,𝑦)∈𝑆

.

Especially, if 𝑆 is the training dataset, then �̂�𝑆(𝑓𝑤) is also called the training error, and if 𝑇 is

the testing dataset, then �̂�𝑇(𝑓𝑤) is also called the testing error.

7.2 The theory of generalization bounds

Even though it is almost impossible to exactly compute generalization errors because there

are innumerable data in input-spaces, various theorems on generalization bounds, that are

(upper) bounds of generalization errors, have been proposed for guaranteeing that “the

generalization error of a machine-learned model is less than a generalization bound with

probability at least 𝑝% ,” where p is the confidence of the bound. In this section, we briefly

classify the theorems on the generalization bounds in Subsection 7.2.1, and then we explain the

theorems in Subsections 7.2.2~7.2.5.

 A classification of generalization bounds

In this subsection, according to the classification of the generalization bounds as shown in

Figure 7.2, we briefly explain the feasibility for applying generalization bounds to the evaluation

of generalization performance of machine-learned models. In Figure 7.2, it seems difficult to

apply the VC bounds or the Rademacher bounds for evaluating the generalization performance

of (trained) machine-learned models because they give upper bounds of the worst model in the

set ℱ of expressible machine-learned models in a given neural network. The PAC-Bayes bounds

are effective for comparing the generalization performance of two or more machine-learned

models [59][60] even though the absolute values of the bounds often are vacuous (close to or

more than 100%). The Chernoff bounds can give upper bounds very close to the generalization

errors by providing a large amount of testing data separately from the training dataset.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

45

Figure 7.2 A Classification of generalization bounds and well-known examples of bounds

In most cases, generalization bounds based on training errors (i.e., training datasets) is larger

than generalization bounds based on testing errors (i.e., testing datasets). This tendency is also

seen not only for the PAC-Bayes bounds but also for the others such as bounds based on output

margins [61], bounds based on the stability of the training algorithm [62], and so on.

The advantage of generalization bounds based on training errors is that they can be applied

to the study of training (algorithms) for reducing generalization errors. The other advantage is

that they can be computed only by training datasets without additional datasets such as testing

datasets. For example, when the number of data samples is very small (e.g., a few dozen), it was

reported that the PAC-Bayes bounds, where all samples were used for training, were able to be

lower than the Chernoff bounds, where the samples were separated for training and testing [63].

Recently, several methods have been proposed for computing non-vacuous generalization

bounds (less than 100%) even based on training errors. For example, such methods use

distributions of machine-learned models (i.e., input-output functions instead of weights) in the

PAC-Bayes bounds [64], or random labelled data in training [65], or model compression [66].

Furthermore, methods have also been proposed to optimize the distribution (the mean and the

standard deviation) of each weight to reduce generalization errors using the PAC-Bayes bounds

as objective functions [67][68]. In the near future, it is expected that generalization bounds

based on training errors will also be effective as a measure of the generalization performance of

machine-learned models, but currently, we consider that it is more realistic to adopt

generalization bounds based on testing errors.

 VC bounds

The VC dimension 𝑉𝐶(ℱ) is a complexity measure of the set ℱ of expressible machine-

learned models and it means the maximum number of data that can be divided by ℱ [69]. Then,

by using the VC dimension 𝑉𝐶(ℱ), the theorem, VC bounds [59], guarantees that the following

inequality holds with probability (1 − 𝛿) at least, for any training data set 𝑆~𝒟𝑚 (size: 𝑚)

and for any machine-learned model 𝑓 ∈ ℱ:

Generalization

bounds

e.g., VC bounds

e.g., Rademacher bounds

e.g., Chernoff bounds

e.g., PAC-Bayes bounds

Based on

testing errors

Dependent on

training algorithms

Based on

training errors

Independent of

training algorithms

Independent of

training datasets

Dependent on

training datasets

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

46

𝐿(𝑓) ≤ �̂�𝑆(𝑓) + 144√
𝑉𝐶(ℱ)

𝑚
+

√ln
1
𝛿

𝑚
,

where 𝛿 ∈ (0,1) represents the uncertainty of the inequality.

Most of computation results of VC-bounds exceed 100% because the bounds consider the

worst case such that any model is selected from the set ℱ for any training dataset when the set

ℱ of expressible machine-learned models (i.e., architecture of a neural network) is given, in

other words, the bounds are independent of training dataset and training algorithm. Therefore,

it is not appropriate to use it to evaluate the generalization performance of trained machine-

learned models.

 Rademacher bounds

The Rademacher complexity is the complexity 𝑅(𝑆, ℋ) of the set ℱ of expressible machine

learned models for the dataset 𝑆 [69]. Then, by using the complexity 𝑅(𝑆, ℋ) , the theorem,

Rademacher bounds [59], guarantees that the following inequality holds with probability (1 −

𝛿) at least, for any training data set 𝑆~𝒟𝑚 (size: 𝑚) and for any machine-learned model 𝑓 ∈

ℱ:

𝐿(𝑓) ≤ �̂�𝑆(𝑓) + 2𝑅(𝑆, ℱ) + 4𝑐
√2 ln

4
𝛿

𝑚
,

where 𝑐 is a constant.

The Rademacher bounds are lower than the VC bounds because the training dataset 𝑆 is

considered, but the most of bounds also exceed 100% because the bounds are still independent

of training algorithm. Therefore, it is not appropriate to use the Rademacher bounds to evaluate

the generalization performance of trained machine-learned models by the same reason as the

VC bounds.

 PAC-Bayes bounds

PAC (Probably Approximately Correct) represents that a machine-learned model 𝑓𝑤 trained

by a training dataset is an approximation of the correct model and the generalization error gap

is less than a threshold with a probability. PAC-Bayes considers the expected value 𝔼𝑤~𝑄[𝐿(𝑓𝑤)]

of the generalization error of the probabilistic machine-learned model 𝑓𝑤 whose weights 𝑤

are randomly selected according to the probability-distribution 𝑄 instead of fixed values.

Although several theorems on the PAC-Bayes bounds have been proved, two well-known

theorems (Catoni bounds and Maurer bounds) are introduced in this subsection. The theorem,

Catoni bounds [70], guarantees that the following inequality holds with probability (1 − 𝛿) at

least, for any posterior distribution 𝑄 and for any 𝛽, 𝛿 > 0 , when a training dataset 𝑆~𝒟𝑚

(size: 𝑚) and a prior distribution 𝑃 whose weights independent of 𝑆 are given:

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

47

𝔼𝑤~𝑄[𝐿(𝑓𝑤)] ≤
1

1 − exp(−𝛽)
(1 − exp (−𝛽𝔼𝑤~𝑄[�̂�𝑆(𝑓𝑤)] −

1

𝑚
(KL(𝑄 ∥ 𝑃) + ln

1

𝛿
))).

The theorem, Maurer bound [71], guarantees that the following inequality holds with probability

(1 − 𝛿) at least, if 𝑚 ≥ 8:

𝔼𝑤~𝑄[𝐿(𝑓𝑤)] ≤ 𝑘𝑙−1 (𝔼𝑤~𝑄[�̂�𝑆(𝑓𝑤)],
1

𝑚
(𝐾𝐿(𝑄 ∥ 𝑃) + ln (

2√𝑚

𝛿
))),

where 𝐾𝐿(𝑄 ∥ 𝑃) is the KL-divergence (Kullback-Leibler divergence) that shows the difference

between the two distributions 𝑄 and 𝑃, and it is defined as follows:

𝐾𝐿(𝑄 ∥ 𝑃) = ∫ 𝑄(𝑤) ln (
𝑄(𝑤)

𝑃(𝑤)
) 𝑑𝑤

𝒲

,

and 𝑘𝑙−1(𝑞, 𝑏) is the binary KL-inversion defined by

𝑘𝑙−1(𝑞, 𝑏) = sup{ 𝑝 ∈ [𝑥, 1] ∶ 𝑘𝑙(𝑞 ∥ 𝑝) ≤ 𝑏 },

where 𝑘𝑙(𝑞 ∥ 𝑝) is the binary KL-divergence (the KL-divergence of the Bernoulli distributions

of 𝑞 and 𝑝) defined as follows:

𝑘𝑙(𝑞 ∥ 𝑝) = ∑ 𝑞𝑘(1 − 𝑞)1−𝑘 ln (
𝑞𝑘(1 − 𝑞)1−𝑘

𝑝𝑘(1 − 𝑝)1−𝑘
)

𝑘∈{0,1}

= 𝑞 ln (
𝑞

 𝑝
) + (1 − 𝑞) ln (

1 − 𝑞

 1 − 𝑝
).

As shown in the Catoni bounds and the Maurer bounds, the PAC-Bayes bounds contain the

posterior distribution 𝑄 of the trained machine-learned model (i.e., they depend on the

training algorithms). Compared with the VC bounds and the Rademacher bounds, the PAC-Bayes

bounds can give generalization bounds closer to the generalization errors, but the computation

results of the PAC-Bayes bounds are often close to 100% (i.e., vacuous).

 Chernoff bounds

There are generalization bounds based on testing errors for the dataset 𝑇~𝒟𝑚 (size: 𝑚)

that is not used in training (i.e., held-out dataset prepared for evaluation). For example, the

theorem, Chernoff bounds [72], guarantees that the following inequality holds with probability

(1 − 𝛿) at least:

 𝐿(𝑓𝑤) ≤ 𝑘𝑙−1 (�̂�𝑇(𝑓𝑤),
1

 𝑚
ln (

1

 𝛿
)),

where 𝑘𝑙−1(𝑞, 𝑏) is the binary KL-inversion explained in Subsection 7.2.4. Here, note that the

testing error �̂�𝑇(𝑓𝑤) is used for expressing the upper bounds. The Chernoff bounds can give tight

generalization bounds (i.e., close to the generalization errors) when sufficient testing dataset are

prepared.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

48

7.3 Computational examples of generalization bounds

In this section, we report some computational examples of generalization bounds based on

the theorems introduced in Section 7.2. At first, in Subsection 7.3.1, it is explained how to

compute generalization bounds. Next, in Subsection 7.3.2, the computation results are shown.

 Computation of generalization bounds

As introduced in Subsection 7.2.5, the Chernoff bounds are useful for evaluating the

generalization performance of trained machine-learned models because they can give tight

generalization bounds, thus close to the generalization errors, and therefore the bounds are

meaningful as absolute values. On the other hand, it has also been reported [59][60] that the

generalization bounds, called perturbation bounds, of machine-learned models whose weights

are perturbated, for example, by the Gaussian noise as shown in Figure 7.3, are useful as

generalization measures for relatively comparing the generalization performance of machine-

learned models. In this section, the standard deviation 𝜎𝑖 of the Gaussian noise 𝒩(0, 𝜎𝑖
2)

added to each weight 𝑤𝑖 is decided to be proportional to the magnitude of 𝑤𝑖 such that 𝜎𝑖 =

𝑟|𝑤𝑖|, where 𝑟 is a positive constant, called SD-rate. Such addition of noise is called magnitude-

aware perturbation [59].

Figure 7.3 A machine-learned model whose weights are perturbated by the Gaussian noise

The theorems on the PAC-Bayes bounds can be applied for computing such generalization

bounds of machine-learned models with probability distribution of perturbated weights. In this

section, we use the posterior distribution 𝑄 equal to the prior distribution 𝑃 trained by a

training dataset 𝑆 in the PAC-Bayes bounds (i.e., 𝑄 = 𝑃). As explained in Subsection 7.2.4, the

posterior distribution 𝑄 can depend on the dataset used for computing generalization bounds,

while the prior distribution 𝑃 cannot depend on it. Hence, we compute the generalization

bound by using a testing dataset 𝑇, separated from 𝑆, in this case of 𝑄 = 𝑃. The advantage of

𝑄 = 𝑃 is that the KL-divergence 𝐾𝐿(𝑄 ∥ 𝑃) is zero. In general, one of the reasons why the PAC-

Bayes bounds are close to 100% is that the KL-divergences are large. In this section, we apply

the PAC-Bayes bounds in the case of 𝑄 = 𝑃 to the computation of generalization bounds based

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

49

on testing errors (i.e., by using testing datasets).

In order to apply the PAC-Bayes bounds, it is necessary to compute the expected value

𝔼𝑢~𝒩(0,𝑟2)𝜔[�̂�𝑇(𝑓𝑤⨁𝑢)] of the testing error of the machine learned model 𝑓𝑤 with noise 𝑢 ,

where 𝜔 is the total number of weights (training parameters), 𝑟 is the rate of noise to weight

magnitude (i.e., SD-rate), and 𝑤⨁𝑢 represents that the noise 𝑢 is added to weights 𝑤

proportionally to the magnitude of each weight element (i.e., for each element 𝑖 ∈ {1, … , 𝜔} ,

(𝑤⨁𝑢)𝑖 = 𝑤𝑖 + 𝑢𝑖|𝑤𝑖|). However, since it is difficult to exactly compute the expected value, we

compute the upper bound of the expected value from the average of testing errors computed

with noise in 𝑛 times. The upper bound �̅�𝑇,𝑈,𝛿′(𝑓𝑤) can be defined as follows, for the set 𝑈 =

{𝑢𝑖 | 𝑖 ∈ {1, … , 𝑛}} of randomly sampled 𝑛 Gaussian noises 𝑢𝑖 ~ 𝒩(0, 𝑟2)𝜔:

 �̅�𝑇,𝑈,𝛿′(𝑓𝑤) = 𝑘𝑙−1 (
1

 |𝑈|
∑ �̂�𝑇(𝑓𝑤⨁𝑢)

𝑢∈𝑈

,
1

 |𝑈|
ln

2

𝛿′
),

where 𝛿′ is the uncertainty for using the average of testing errors instead of the expected value.

Indeed, the following inequality holds with probability (1 − 𝛿′) at least (e.g. see Section 6 in

[68]):

𝔼𝑢~𝒩(0,𝑟2)𝜔[�̂�𝑇(𝑓𝑤⨁𝑢)] ≤ �̅�𝑇,𝑈,𝛿′(𝑓𝑤).

Consequently, in this section, we use the following three expressions for computing

generalization bounds using a testing dataset 𝑇 (size: 𝑚),

(1) Chernoff bounds: 𝑘𝑙−1 (�̂�𝑇(𝑓𝑤),
1

 𝑚
ln (

1

 𝛿
)) ,

(2) Catoni bounds:
1

1 − exp(−𝛽)
(1 − exp (−𝛽 �̅�𝑇,𝑈,𝛿′(𝑓𝑤) −

1

 𝑚
ln (

1

 𝛿 − 𝛿′
))) ,

(3) Maurer bounds: 𝑘𝑙−1 (�̅�𝑇,𝑈,𝛿′(𝑓𝑤),
1

 𝑚
ln (

2√𝑚

 𝛿 − 𝛿′
)),

where 𝐾𝐿(𝑄 ∥ 𝑃) in the Catoni bounds and the Maurer bounds has disappeared because it is

zero if 𝑄 = 𝑃. Note that the denominators in the logarithms in the expressions (2) and (3)

are replaced by (𝛿 − 𝛿′) from 𝛿 because a part of the uncertainty 𝛿 of generalization bounds

must be used as the uncertainty 𝛿′ of expected values. In this section, the uncertainty 𝛿′ is

obtained as the solution of the following equation (e.g., by the Newton method) for

approximately minimize the expression (3):

(21−
𝑚
𝑛 √𝑚) 𝛿′

𝑚
𝑛 + 𝛿′ − 𝛿 = 0,

where 𝑚 is the size of the testing dataset and 𝑛 is the number of testing errors repeatedly

computed with noise added. Similarly, the parameter 𝛽 is given for approximately minimizing

the expression (2) as follows:

𝛽 = √
2 ln (

1
𝛿

)

 𝑚 �̅�𝑇,𝑈,𝛿′(𝑓𝑤) (1 − �̅�𝑇,𝑈,𝛿′(𝑓𝑤))
.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

50

The binary KL-inversion 𝑘𝑙−1(𝑞, 𝑏) in the expressions (1) and (3) can be approximately

computed, for example, by the Newton method (e.g., see Appendix C in [67]).

 Computational results of generalization bounds

In this subsection, we report the computational results of the generalization bounds by the

expressions (1) , (2) , and (3) described in Subsection 8.3.1, for the following two types of

neural networks MLP and CNN trained on the dataset MNIST (pixels: 28 × 28, grayscale: [0,1],

training size: 27,000, and testing size: 10,000) of handwritten digit images.

– MLP (Multi-Layer Perceptron):

➢ The total number of the training parameters: 118,282

➢ The layers: 3 fully connected layers

– CNN (Convolutional Neural Network):

➢ The total number of the training parameters: 121,930

➢ The layers: 2 convolutional layers, 2 pooling layers, and 2 fully connected layers

For comparing generalization performance, 4 machine-learned models for each neural

network MLP/CNN were trained in the parameters shown in Table 7.1

Table 7.1 The training parameters in the 4 machine-learned models

Model ID Dropout rate 𝐿2-Regularization

#1 0 0

#2 0 0.001

#3 0.2 0

#4 0.2 0.001

Figure 7.4 shows the computational results of the generalization bounds for the machine-

learned models of MLP and CNN (4 models for each), for the SD-rates 𝑟 = 0, … , 0.7, where the

Chernoff bounds are used for the case 𝑟 = 0 (no noise) and the Catoni bounds are used for the

cases 𝑟 = 0.1, … , 0.7. The computational results by the Maurer bounds are omitted because they

were always almost 1% higher than the Catoni bounds. The confidence (1 − 𝛿) , i.e., the

probability that the generalization errors are less than the generalization bounds, is 90% in

Figure 7.4. The upper bounds of expected values of testing errors with noise added are computed

from the averages of 5,000 testing errors with noise added for 10,000 test data samples (i.e.,

𝑚 = 10,000 and 𝑛 = 5,000). For the cases of 𝑟 = 0 and 0.3 in Figure 7.4, the generalization

gaps (the difference between the generalization bounds and the testing errors) and the

expectation gaps (the difference between the expected values of testing errors and the averages)

are shown in Figure 7.5 and Figure 7.6, respectively.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

51

(a) The generalization bounds of MLP#1~4 (b) The generalization bounds of CNN#1~4

Figure 7.4 The computational results by the Chernoff (𝑟 = 0) and the Catoni bounds (𝑟 > 0)

(a) The generalization bounds of MLP#1~4 (b) The generalization bounds of CNN#1~4

Figure 7.5 The generalization gaps in the Chernoff (𝑟 = 0)

(a) The generalization bounds of MLP#1~4 (b) The generalization bounds of CNN#1~4

Figure 7.6 The generalization gaps and the expectation gaps in the Catoni bounds (𝑟 = 0.3)

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

52

As shown in Figure 7.5, the generalization bounds by the Chernoff bounds are very close to

the testing errors and the values of the bounds are meaningful on their own (as absolute values).

On the other hand, as a relative evaluation between machine-learned models, the generalization

bounds in Figure 7.5 do not show any difference from the (normal) testing errors by data

samples. For example, the generalization bound of CNN#2 with 𝐿2-regularization is larger than

the bound of CNN#1 as shown in Figure 7.5 (b). It seems that the generalization bounds are not

enough to evaluate generalization performance. Then, in order to evaluate the generalization

performance at different viewpoints from data samples, it is useful to add noise to weights in

neural networks. Figure 7.4 and Figure 7.6 clearly show that the 𝐿2 -regularization and the

dropout can suppress increase of the generalization bounds when noise increases. Although

such suppression-effect is empirically well-known, it is an advantage of the generalization

bounds that they can quantitatively evaluate such effect and can probabilistically guarantee the

upper bounds of the generalization errors according to the statistical learning theory.

In the rest of this subsection, as an example of generalization bounds based on training errors,

we show a computational result of MLP#4 (i.e., with the dropout and the regularization). In the

training of MLP#4, each initial weight 𝑤0𝑖 was randomly selected according to the normal

distribution 𝑃𝑖 = 𝒩(0, 𝜎0𝑖
2) , i.e., the mean is 0 and the standard deviation is 𝜎0𝑖 . For each

weight 𝑤𝑖, the KL-divergence 𝐾𝐿(𝑄𝑖 ∥ 𝑃𝑖) between the prior distribution 𝑃𝑖 and the posterior

distribution 𝑄𝑖 = 𝒩(𝑤𝑖 , (𝑟|𝑤𝑖|)2) is equal to or larger than (1/2𝑟2). Here, the equality holds if

𝜎0𝑖 = 𝑟|𝑤𝑖| , but we cannot assume the equality because 𝜎0𝑖 cannot depend on the training

dataset (i.e., on 𝑤𝑖). Then, the minimum of the total KL-divergence of a neural network is

(𝜔/2𝑟2) , where 𝜔 is the total number of weights. For example, the minimum of the KL-

divergence of MLP#4 (𝜔 = 118,282) in the case of 𝑟 = 0.5 is 236,564. Then, the generalization

bound of the MLP#4 (𝑟 = 0.5) computed by the Catoni bounds is 99.99% with probability

90% at least, although the average of 5,000 training errors was 2.17%. The several techniques

for reducing the generalization bounds based on training errors have been proposed, but it is

thought to be currently practical to use testing datasets (i.e., the generalization bounds based on

testing errors).

7.4 Towards the evaluation of “the stability of trained models”

The stability of trained models is one of the nine internal quality characteristics described in

Machine Learning Quality Management Guideline [1] and it represents that machine-learned

components reasonably behave even for unseen input data. The theorems and the computations

on the generalization bounds explained in this chapter make it possible to theoretically

guarantee the probabilistic upper bounds of the generalization errors (i.e., expected values of

error rates for all data including unseen data). Therefore, the generalization bounds will be one

of useful methods for evaluating “the stability of trained models.”

In Subsection 7.3.2, it has been shown that the Chernoff bounds based on testing errors can

give meaningful values close to generalization errors, In addition, it has been also shown that

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

53

the PAC-Bayes bounds (e.g., the Catoni bounds) can gives meaningful perturbated generalization

bounds based on testing errors (not on training errors) for probabilistic machine learned models

by adding noise to the weights. Such perturbation bounds make it possible to quantitatively

evaluate the performance at different viewpoints from normal testing by data samples.

As an additional investigation, we note the relation between perturbated generalization

bounds and the randomized smoothing introduced in Subsection 6.2.6. In the randomized

smoothing, certifiable approximative probabilistic maximum safe radii can be estimated by

adding noise to input data. We are still investigating the possibility that the perturbated

generalization bounds can theoretically guarantee robustness in a similar way.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

54

8 Adversarial Example Detection

8.1 Research summary

With the goal of practically establishing a method for determining whether a given input

image is an adversarial example, we focus on the following points regarding attacks and

detection methods that generate adversarial examples. We are conducting a survey of typical

technologies.

– Supporting adversarial example detection program code and confirmation by

computational experiment

– Reproduction of experimental results of adversarial example detection method papers

– Implementation of the framework for detecting adversarial examples

Adversarial example detection stands for detecting adversarial examples from given inputs,

and existing state-of-the-art adversarial example detection methods can be divided into four

main categories.

① Metric based approaches (example [73])

② Denoisers approaches (example [74])

③ Prediction inconsistency based approaches (example [75])

④ Neural Network Invariant Checking (NIC) approaches (example [76])

In this chapter, we report the results of additional test experiments to compare and evaluate

adversarial example detection methods based on each of these approaches ① to ④. As reported

in the paper [76], it was confirmed that the approach of ④ (NIC: Neural Network Invariant

Checking) shows the highest detection rate among ① to ④. In this follow-up experiment, the

published implementation code was used for ① to ③, but the implementation code was not

published for ④, so a computer experiment was conducted by implementing the NIC according

to the paper [76]. Therefore, this chapter mainly describes the NIC ④.

After explaining the outline of the four approaches, the method of detecting adversarial

examples by the NIC is explained, and the implementation method is described. Then, the results

of the follow-up experiments of each approach and the experiments by the NIC are described.

Finally, we report the implementation of the NIC framework and the effectiveness evaluation.

8.2 Overview of adversarial example detection approaches

In this section, the four state-of-the-art approaches to adversarial example detection are

overviewed.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

55

 Metric based approaches

A method of performing statistical measurements of inputs (and outputs of each neuron) to

detect adversarial examples, Ma et al. recently proposed the use of a measurement called Local

Intrinsic Dimensionality (LID) [73]. This method estimates the LID value that evaluates the

space-filling capacity of the area surrounding the sample by calculating the distance distribution

of the sample and the number of neighbors in each layer, and the adversarial example tends to

have a large LID value. It uses certain properties to detect adversarial examples. LID is superior

to traditional kernel density estimation (KD) and Bayesian uncertainty (BU) for detecting

adversarial examples and is currently the state-of-the-art technology for this type of detector.

 Denoisers approaches

It is a method of detecting adversarial examples by removing noise in a preprocessing step

for each input. In this method, the training model or noise remover (encoder and decoder) is

trained to filter the image so that the key components in the training model can be highlighted.

This filter can be used to remove noise added by an attacker to generate adversarial examples

and correct misclassification. MagNet [74] is a method of detecting adversarial examples using

detectors and reformers (trained automatic encoders and automatic decoders).

 Prediction inconsistency based approach

A method of detecting adversarial examples by measuring the discrepancy between the

original neural network and the neural network enhanced by human perceptible attributes.

Feature Squeezing [75], the state-of-the-art detection technique of this method, can achieve very

high detection rates against a variety of attacks. Feature squeezing focuses on detecting gradient-

based attacks, focusing on the ability of attackers to generate adversarial examples through the

unnecessarily large input feature space of deep neural networks DNN. The procedure for

detecting adversarial examples by feature squeezing is shown below.

1. Apply squeezing technology (a technology that reduces the color depth of an image and

smooths the image) to the original input image to generate multiple squeezed images.

2. Input the original input image and multiple squeeze images into the deep neural

network, and measure the distance between the inference result (prediction vector) of

the input image and the inference result of each squeeze image.

3. When one of the differences (distances) between the original input image and the

squeeze image exceeds the threshold value, the original input image is detected as an

adversarial example.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

56

 Neural Network Invariant Checking (NIC) approaches

The NIC (Neural Network Invariant Checking) method focuses on value invariants (VIs) and

provenance invariants (PIs) inside deep neural networks [76]. The value invariant VI is the

distribution of possible neuron values in each layer, and the provenance invariant PI is the

possible neuron value pattern of two consecutive layers (summary of correlation between

features across two layers). If an input violates these invariants, the input is detected as an

adversarial example. The NIC [76] method trains these invariant VIs and PIs with benign input

data and model them as a one-class classification (OCC) problem that detects adversarial

examples. A higher detection rate has been reported than the methods based on (1) to (3)

explained above. The outline and the implementation of the NIC system design are explained in

detail in Sections 8.3 and 8.4, respectively.

8.3 NIC system design overview

The procedure for building the NIC detector (steps A to C: during training, D to E: during

execution) is explained by using Figure 8.1 [76]. This invariant VI, PI training uses only non-

adversarial benign data.

Figure 8.1 Outline of system design (Fig. 8 of thesis [76])

– Step A: Collect the output value of each neuron at each layer of each training data input.

– Step B: For each layer 𝑘 (e.g., L1, L2), extract the sub-models from the input layer to

the 𝑘 layer and add a new softmax layer with the same output label as the original

model. Then create a derived model (DerivedModel in Figure 8.1)

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

57

– Step C: Enter each benign training data for all derived models and collect the final

output of these models (i.e., the output probability values of the individual classes). For

each set of consecutive layers, we train using the distribution of the classification

results of this derivative model. This trained distribution is the PI for these two layers.

– Step D: Input each test data 𝑡 (for example, the image of “4” in Figure 8.1) to all

derivative models in addition to the original model, and observe the activation value of

each layer of the original model. Collect the value OV (for example, OV(L1, 𝑡) in Figure

8.1) and the classification result (set) of the derivative model of consecutive layers.

From this classification result, the observed source OP (for example, OP(L1, L2, 𝑡), etc.)

is obtained.

– Step E: Calculate the probability D that the OV and OP fit the corresponding VI and PI

distributions. The possibility that the input 𝑡 is adversarial is predicted at the same

time by aggregating all these D values.

8.4 NIC system implementation

In order to detect adversarial examples based on NIC, a direct sum space (vector) is

constructed from PI and VI, and for classifying this vector, an OSVM (One Class Support Vector

Machine) is constructed. When the input to the layer 𝑙 of the trained DNN (Deep Neural

Network) model (hereinafter referred to as M) is 𝑥𝑙 , the output 𝑓𝑙 of the layer 𝑙 is given by

the following equation:

𝑓𝑙 = 𝜎(𝑥𝑙 ∙ 𝑤𝑙
𝑇 + 𝑏𝑙),

where 𝜎 is the activation function of the layer 𝑙, 𝑤𝑙
𝑇 is the weight matrix, and 𝑏𝑙 is the bias.

At this time, the direct sum spaces classified by VI, PI, and OSVM are obtained as follows.

– VI calculation: The VI of each layer 𝑙 of model M is determined by solving the following

optimization problem.

𝑉𝐼𝑙 = min [∑ 𝐽(𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓1(𝑥) ⋯ 𝑤𝑇 − 1)

𝑥∈𝑋𝑏

]

Here, 𝐽 is the error evaluation function, and 𝑋𝑏 is the batch used to create M. Also, ∘

is a monoid, in this case a vectorized version of 𝑓𝑘 .

– PI calculation: 𝑃𝐼𝑙,𝑙+1(𝑥) is based on the classification output of the derived models of

the layers 𝑙 and 𝑙 + 1 . The probability that 𝑥 is benign (non-adversarial) is

estimated by solving the following optimization problem.

𝑃𝐼𝑙,𝑙+1(𝑥) = min [∑ 𝐽(𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝑙(𝑥), 𝐷𝑙+1(𝑥)) ⋯ 𝑤𝑇 − 1)

𝑥∈𝑋𝑏

]

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

58

Here, a derivative model 𝐷𝑙 of the layer 𝑙 is defined as follows, with the softmax layer

added after the layer 𝑙.

𝐷𝑙 = softmax ∘ 𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓1

– Direct sum space of PI and VI: From the VI and PI obtained by the above optimization,

the following direct sum space (vector) is created for each batch of training data of

model M.

𝑉𝐼1 ⨁ 𝑃𝐼1,2 ⨁ 𝑉𝐼2 ⨁ 𝑃𝐼2,3 ⋯ 𝑉𝐼𝐵 ⨁ 𝑃𝐼𝐵−1,𝐵 ⨁ 𝑉𝐼𝐵

This vector is 𝐿 × 3 dimensions (𝐿 is the number of layers of M), which is the vector

space (direct sum space) of the number 𝐵. The NIC performs OSVM on this space.

8.5 Computer experiment

In order to confirm the effect of adversarial example detection technology (NIC), the

experiment of the paper [76] was retested in the following experimental environment.

– Hardware environment: AIST ABCI [77]

– Datasets: Two common image datasets, MNIST [78] and CIFAR-10 [79], were used for

image classification experiments. MNIST is a grayscale image dataset used for

handwritten digit recognition, and CIFAR-10 is a color image dataset used for object

recognition. For NIC, we also conducted an experiment on LFW (face image) [80].

– Attacks: Non-targeted attacks (FGSM 𝐿2 ,𝐿∞), targeted attacks JSMA, and gradient-

based attacks (CW 𝐿2) were used to generate adversarial examples. The Cleverhans

library [81] was used to implement FGSM and JSMA

First, in order to evaluate the adversarial example detection method based on each of the

approaches ① to ③, the published implementation code of LID [73], MagNet [74], and feature

squeezing [75] was used to evaluate each paper. Then, follow-up experiments were conducted.

As the result, the detection rates reported in each paper were able to be confirmed, and among

these three, feature squeezing showed the highest detection rate.

Next, in order to evaluate the adversarial example detection method based on the approach

④, an experiment was conducted using the NIC code implemented in Section 8.4. Table 8.1 to

Table 8.3 show the results of adversarial example detection and computational experiments on

the MNIST, CIFAR-10, and LFW datasets, respectively. Here, the correct answer rate is the rate at

which adversarial examples are input to the classifier (OSVM) described in Section 7.4 and are

determined to be adversarial examples. The CNN model used in the experiment is LeNet5, and

the OSVM Kernel is RBF (MNIST: γ = 0.1 to 0.27, CIFAR-10: γ = 0.11 to 0.2, LFW: γ = 0.005 to

0.90). In the results of this experiment, high detection performance was confirmed not only for

the dataset and attack method reported in the paper [76], but also for the unreported dataset

LFW and attack method (FGSM 𝐿∞).

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

59

Table 8.1 Adversarial example detection computational experiment results for MNIST dataset

Data Set Attack Invariant Performance Number

of data

Performance reported

in the paper [76]

MNIST FGSM 𝐿2 VI 97% 2800 100%

PI 98% 84%

NIC 97% 100%

FGSM 𝐿∞ VI 98% 2800 ―

PI 98% ―

NIC 98% ―

JSMA VI 100% 280 83%

PI 100% 100%

NIC 100% 100%

CW2 VI 100% 280 95%

PI 100% 96%

NIC 100% 100%

Trojan VI 100% 3200 100%

PI 100% 100%

NIC 100% 100%

Table 8.2 Adversarial example detection computational experimental results for CIFAR-10 dataset

Data Set Attack Invariant Performance Number

of data

Performance reported

in the paper [76]

CIFAR-10 FGSM 𝐿2 VI 99% 6400 100%

PI 99% 52%

NIC 99% 100%

FGSM 𝐿∞ VI 100% 6400 ―

PI 100% ―

NIC 100% ―

JSMA VI 97% 320 62%

PI 95% 100%

NIC 96% 100%

CW2 VI 98% 320 88%

PI 95% 89%

NIC 96% 100%

Trojan VI 100% 3200 100%

PI 100% 100%

NIC 100% 100%

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

60

Table 8.3 Adversarial example detection computational experiment results for LFW dataset

Data Set Attack Invariant Performance Number

of data

Performance reported

in the paper [76]

LFW FGSM 𝐿2 VI 98% 28222

―

PI 98% ―

NIC 98% ―

FGSM 𝐿∞ VI 100% 2822

―

PI 100% ―

NIC 100% ―

JSMA VI 100% 280

―

PI 100% ―

NIC 100% ―

CW2 VI 100% 840

―

PI 100% ―

NIC 100% ―

Trojan VI 100% 3200 ―

PI 100% ―

NIC 100% ―

8.6 Implementation of the NIC framework

We have implemented a simplified NIC method based on Sections 8.3 and 8.4 in order to

conduct the computer experiments for confirming the effectiveness of NIC in Section 8.5. In the

simplified implementation, we have found some implementation issues in the original paper

[76]. In this section, while clarifying the issues, we reconsider the algorithm in order to construct

the NIC framework for high detection rates of adversarial examples on the testbed, that is used

for creating an environment (attack, defense and detection) to benchmark vulnerability to

adversarial examples.

 Overview of the NIC framework

The NIC framework consists of five parts: taking output from each layer; calculating VI and PI

for normal data; calculating VI, PI and NIC for adversarial examples; evaluating OSVM and

displaying results. The use case of the NIC framework is shown in Figure 8.2. In addition, the

process steps for detecting adversarial examples are shown in Figure 8.3.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

61

Figure 8.2 NIC framework use cases

Figure 8.3 Processing procedures for adversarial example detection by the NIC framework

As shown in Figure 8.3, the overall processing procedure for adversarial example detection

by the NIC framework consists of five parts. The function of each part (input, processing and

output) is shown in Table 8.4.

 Output of OSVM evaluation results

The NIC framework has been implemented using scikit-learn, that is a Python machine

learning library. For example, the scikit-learn's OneClassSVM class is used for implementing the

final part of the OSVM as shown in Figure 8.3 as follows.

class sklearn.svm.OneClassSVM(array, kernel='rbf', gamma='auto', nu=0.3)

Here, the meaning of each argument is as follows.

・ array: parameters trained by normal data and used for detecting adversarial examples in

NIC.

・ kernel: the RBF kernel is used as the algorithm for One Class SVM.

・ gamma: the gamma parameter of the RBF kernel is set to 'auto'.

・ nu: the upper limit for the percentage of training error and the lower limit for the

percentage of support vector are set to 0.3 in this case.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

62

Table 8.4 Functions of the parts comprising the adversarial example detection process procedure

Output extraction from each layer

input Normal data (images)

Adversarial examples (image).

Trained models, trained on normal data (models trained on normal data)

processing Obtain the output of each layer of the trained model for normal and adversarial

examples and save it in 'numpy in numpy' format.

output (e.g.

of dynamo)

Output data from each layer

VI and PI calculations for normal data

input Output data from each layer of normal data

processing Calculate VI, PI from the output data of each layer of normal data.

output (e.g.

of dynamo)

VI, PI

VI and PI calculations for adversarial examples

input Output data from each layer of adversarial examples

Created at the time of calculation to PI with normal data Derived model of PI

processing Compute VI, PI from the output of each layer of adversarial examples.

output (e.g.

of dynamo)

VI, PI

Calculation of NIC

input VI of normal data, PI

VI of adversarial examples, PI

processing NIC of normal data is created from VI and PI of normal data and NIC of

adversarial examples is calculated from VI and PI of adversarial examples,

respectively.

output (e.g.

of dynamo)

NIC for normal data, NIC for adversarial examples

Evaluation and display of results in OSVM.

input NIC of normal data

NIC for adversarial examples.

processing Train OSVM on normal data to create a model, and use this trained model to

judge adversarial examples; OSVM uses sk-learn's one class svm API. The

judgement results are then displayed.

output (e.g.

of dynamo)

Assessment Results

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

63

Figure 8.4 shows output values from each layer when one normal data and its adversarial

examples are input to the NIC framework, where the horizontal axis is the ID of the model

derived to calculate the NIC at each layer (Note. There are multiple outputs from each layer for

one image, for example, a convolution layer in CNN), and the vertical axis represents the signed

distance of each NIC to the One Class SVM classification hyperplane of the NIC of the normal data,

that is the closeness to the normal data in this case. The black dots in Figure 8.4 (a) represent

the output relative to the normal data, the red dots in Figure 8.4 (b) are the outputs for

adversarial examples. In this calculation, the adversarial examples in Figure 8.4 (b) were

generated by using the FGSM 𝐿∞ attack method.

(a) Normal input data (b) Adversarial input data

Figure 8.4 Comparison of NIC framework outputs

After training One Class SVM by normal data, One Class SVM function 𝑓(𝑥) can be used for

detecting adversarial examples such that if 𝑓(𝑥) ≥ 0 then the input 𝑥 is normal otherwise it

is adversarial. Most of the output for normal data are close to zero as shown in Figure 8.4 (a),

while approximately 94% of the outputs for adversarial examples are explicitly less than zero as

shown in Figure 8.4 (b). This difference of the output between Figure 8.4 (a) and (b) explains

that NIC can effectively detect adversarial examples.

 Generation of adversarial examples

As shown in Figure 8.3, NIC framework does not include the program for generating

adversarial examples. We recommend for using CleverHans [82] if adversarial examples are

necessary. Figure 8.5 shows some examples in the normal (original) images of handwritten

numbers (MNIST) and the adversarial examples generated from the normal images by attack

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

64

method FGSM 𝐿2 with the misclassified labels inferred for the adversarial images. As shown in

the inference results (label 8) in Figure 8.5 (b), all generated adversarial examples are

misclassified as 8.

(a) Original MNIST data (b) Generated adversarial examples

Figure 8.5 Example of adversarial example generation from MNIST (handwritten numbers) images

and its decision results

 Reducing calculation costs for VI, PI and VIC

The calculation method for VI, PI and NIC in the original paper [76] has been explained in

Section 8.4, but if the calculation method is used, then the dimension of each data (vector)

becomes very large, due to the problem so-called 'dimension demon'. Therefore, we have tried

to reduce the dimension as much as possible. In the following section, we explain how each

calculation is simplified.

– Calculation of VI: in the NIC framework, let 𝑋𝐵 = 1 for clarifying the correspondence

between the input data (both normal and adversarial data) and the VI, PI and NIC (i.e.,

for the accuracy of the verification). In addition, as all input data are normalized and

calculated, the following simplified formula is used:

𝑉𝐼𝑙 = 𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓2 ∘ 𝑓1.

– Calculation of PI: as in the case VI above, let 𝑋𝐵 = 1. Then, the following simplified

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

65

formula is used:

𝑃𝐿𝑙,𝑙−1 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝑙 , 𝐷𝑙−1) ∘ ⋯ ∘ 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷2, 𝐷1).

– NIC calculations: for dimensionality suppression, 𝑋𝐵 is set as follows:

𝑋𝐵 = (The number of layers from which output are obtained)

8.7 Evaluation of the effectiveness of NIC with the Kullback-Leibler divergence

This section reports the results of the evaluation of the effectiveness of the NIC by calculating

the degree of divergence between the images of normal and adversarial examples and the NIC

by using the Kullback-Leibler divergence.

 Kullback-Leibler divergence

The Kullback-Leibler divergence, denoted by 𝐾𝐿(𝑃 ∥ 𝑄) , is a measure of the degree of

divergence between two probability distributions 𝑃 (the probability density functions 𝑝) and

Q (the probability density function 𝑞). The Kullback-Leibler divergence is defined by the

following equation.

𝐾𝐿(𝑃 ∥ 𝑄) = ∫ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)

The Kullback-Leibler divergence is 0 when the two distributions are the same, and it increases

as the divergence increases (the convergence is not guaranteed due to the presence of log).

Figure 8.6 shows a simple calculation example of the Kullback-Leibler divergence. In Figure 8.6

(a), both of the distributions 𝑃 and 𝑄 are the same normal distribution whose mean and

variance are 0.5 and 0.5, respectively, and then the 𝐾𝐿(𝑃 ∥ 𝑄) is 0. In Figure 8.6 (b), the means

of 𝑃 and 𝑄 are 0.5 and 0.55, and the variance of them are 0.5 and 0.55, respectively, and then

the 𝐾𝐿(𝑃 ∥ 𝑄) is 0.053.

(a) In the case of the same distributions (b) In the case of the different distributions

Figure 8.6 Example of Kullback-Leibler divergence calculation

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

66

 Kullback-Leibler divergence estimation

The Kullback-Leibler divergence assumes that the probability distributions to be compared

are fixed, but in practice, both normal and adversarial data are simply sets of images and the

distributions are unknown. Fortunately, a method for approximating the Kullback-Leibler

divergence between sets with unknown probability distributions [83] is known. The outline of

the approximation method calculates the Kullback-Leibler divergence as a solution of an

optimization problem on the following linear polynomial of 𝑟𝜃(𝑥) as the constraint for

minimizing the density ratio 𝑟(𝑥) = 𝑝(𝑥)/𝑞(𝑥):

𝑟𝜃(𝑥) = ∑ 𝜃𝑗𝜓𝑗(𝑥) = 𝜽𝑇𝝍(𝑥)

𝑏

𝑗=1

,

where 𝜓𝑗(𝑥) is the RBF kernel and is defined by

𝜓𝑗(𝑥) = exp (−
‖𝑥 − 𝑥′‖2

2ℎ2
),

where ℎ is a determinable constant and is the bandwidth.

Then, the Kullback-Leibler divergence can be approximately calculated by the linear

polynomial 𝑟𝜃(𝑥) obtained as the solution of the optimization problem as follows [83]:

𝐾𝐿(𝑃 ∥ 𝑄) ~
1

𝑛
∑ log 𝑟(𝒙𝑖)

𝑛

𝑖=1

 Effectiveness evaluation of NIC

In Section 8.5, we have shown that the NIC method can effectively detect adversarial

examples as anomaly data by experiments. In this section, we show the degree of divergence

between normal data and adversarial examples by comparing the Kullback-Leibler divergence

of them for explaining the reason why NIC is effective.

At first, Figure 8.7 shows the computational results of the Kullback-Leibler of normal data

and adversarial examples (generated by the attack method FGSM 𝐿2) for 50 image data samples,

as shown in Figure 8.5. The approximate value of the Kullback-Leibler divergence for the FGSM

in Figure 8.7 is 0.46. Here, note that the average value of the multiple Kullback-Leibler divergence

is shown in Figure 8.7 because there are multiple values of NIC for one image as explained in

Figure 8.4.

Next, Figure 8.8 shows the computational results of the Kullback-Leibler of NIC of the normal

data and the adversarial examples used in Figure 8.7. The approximate value of the Kullback-

Leibler divergence in Figure 8.8 is 4.47. Therefore, the Kullback-Leibler divergence in Figure 8.8

is about 10 times larger than one in Figure 8.7. We conjecture that the results mean that the

perturbations added to normal data can be extracted as more explicit difference by the NIC

method.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

67

Figure 8.7 The Kullback-Leibler divergence for normal and adversarial examples

Figure 8.8 The Kullback-Leibler divergence of NIC for normal and adversarial examples

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

68

9 AI Quality Management in Operation

In this chapter, we report on the results of a survey on the latest technologies for detecting

changes in data distribution over time, called concept drift, and adapting machine learning

models to the changed distribution for AI quality management during operation. In addition, we

also introduce the results of a survey on the latest unsupervised domain adaptation technologies

published at recent international major conferences on machine learning and computer vision

for further development of the AI quality management technologies.

Concept drift is one of the main causes of performance degradation of machine learning

models running in AI systems during operation. In order to maintain quality that is satisfied at

the beginning of the operation of the system throughout the operation period, it is necessary to

continuously monitor whether drift occurs or not. In addition, if necessary, we retrain the

machine learning models in the system with the latest data to adapt them to the distribution of

data changed after the drift occurs. As the use of machine learning technologies has been

expanded in recent years, AI systems operating with such technologies will require processing a

large amount of data without their true labels (ground truths) in a short period of time, including

types of data that have not been handled in the past.

In the fiscal year 2019-2020, we conducted a survey on the latest technologies for detecting

and adapting to the concept drift to maintain the performance of machine learning models

during operation. As a result of this survey, we found that most of the methods developed so far

are supervised methods that use true labels of data additionally acquired during operation for

the detection and adaptation. However, such true labels are not always available or are often

costly even if they are available. In order to expand the applicability of the detection and

adaptation methods and reduce their operational costs, we found that an "unsupervised

method" that does not use the true labels or a "semi-supervised method" that uses only a limited

number of the true labels is promising. We summarized the results of the surveys organized and

discussed from this perspective.

For details on the survey on detection methods, see Section 7.8 of the Machine Learning

Quality Management Guidelines [1]. In addition, adaptation methods are summarized in our

survey result [84]. Table 9.1 shows the comparison of our survey with the other existing surveys

on concept drift detection and adaptation methods. Gama et al. summarized their survey result

in [85] and Lu et al. added recently published drift detection and adaptation methods in [86].

Those survey papers mainly focus on introducing "supervised" methods that use true labels of

operational data for drift detection and adaptation. On the other hand, Ishida et al. introduced

"unsupervised" concept drift detection methods that do not use true labels of data for drift

detection in [87]. In comparison with those existing survey results, we introduced

"unsupervised" and "semi-supervised" concept drift adaptation methods that do not use or use

only a limited number of true labels as mentioned above. Furthermore, we introduced those drift

adaptation methods based on the characteristic of each method. In detail, we listed ten

remarkable unsupervised/semi-supervised drift adaptation methods and classified them

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

69

according to: i) types of drift that can be dealt with effectively, ii) processes where true labels of

data are required during operation and the percentage of the labeled data used in verifications

shown in the papers, and iii) machine learning models or clustering methods used in each

method. Finally, we closed our survey by discussing further development of unsupervised and

semi-supervised concept drift adaptation methods using knowledge obtained from relevant

unsupervised domain adaptation techniques.

Table 9.1 Comparison of survey papers on concept drift detection and adaptation

 Detection Adaptation

Supervised Gama et al.[85], Lu et al.[86]

Unsupervised /

Semi-supervised
Ishida et al.[87]

Okawa and Kobayashi [84], [88]

(Ours)

In the future operation of AI systems, there is a growing need for new adaptation techniques

that do not use the original training data (i.e., source data) to adapt machine learning models

from the viewpoint of data privacy and portability in addition to that can deal with changes other

than those in the distribution of input data. In particular, adaptation techniques that do not

depend on such training data (source data) are called "source-free domain adaptation

techniques" or "test-time adaptation techniques (if they adapt online)”. These source-free and

test-time adaptation technologies have been attracting more attention because they can reduce

costs not only on management and transmission of source data for adaptation but also on

security for data storage.

In FY2021, following the above-mentioned surveys, we conducted a survey on the latest

research trends in unsupervised adaptation techniques to data changes presented at major

international conferences in the fields of machine learning and computer vision held in 2019-

2021, focusing on unsupervised concept drift adaptation techniques and unsupervised domain

adaptation techniques. The result of this survey is summarized in [88]. In detail, we listed and

introduced 15 remarkable concept drift detection and unsupervised domain adaptation

methods and classified them according to: i) kinds of adaptation problems, ii) kinds of data and

labels used in detection and adaptation, iii) availability for adaptation to label shift, and iv) kinds

of validation tasks. According to the results of this survey, it is shown that there has been

development of the source-free adaptation and test-time adaptation techniques mentioned

above and adaptation techniques that are able to adapt to changes other than the distribution of

input data, such as label shifts. Furthermore, some techniques have been validated not only for

image classification problems, but also for semantic segmentation and object detection

problems. These research trends in unsupervised adaptation techniques are expected to solve

new problems in AI operations, such as maintaining data privacy, and to be used in various

situations in future AI operations.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

70

10 References

Chapter 1:

[1] National Institute of Advanced Industrial Science and Technology (AIST), Machine Learning

Quality Management Guideline (3rd English Edition), Digital Architecture Research Center,

Cyber Physical Security Research Center, Artificial Intelligence Research Center, Technical

Report DigiARC-TR-2023-01/ CPSEC-TR-2023001 , 2023

https://www.digiarc.aist.go.jp/publication/aiqm/

[2] Yuri Miyagi, Masaki Onishi, Machine Learning Model Comparison Visualization Focusing on

Worker Information, The 24th Meeting on Image Recognition and Understanding 2021, I31-

22, 2021.

[3] Yuri Miyagi, Masaki Onishi, Comparative Visualization Method Focusing on Workers for

Evaluation of Machine Learning Models, The 49th Symposium on Visualization, OS12, 2021.

[4] Tomoumi Takase, Dynamic batch size tuning based on stopping criterion for neural

network training, Neurocomputing, Volume 429, pp.1-11, 2021.

[5] Shin Nakajima, Software Testing with Statistical Partial Oracles, 10th SOFL+MSVL, 2021.

Chapter 2:

[6] Satoshi Hara, My Bookmark : Interpretability in Machine Learning, Journal of Japanese

Society for Artificial Intelligence, vol. 33, no. 3, pp. 366-369, 2018 (in Japanese).

[7] Fred Hohman, Minsuk Kahng, Robert Pienta, Duen Horng Chau, Visual Analytics in Deep

Learning: An Interrogative Survey for the Next Frontiers, IEEE Transactions on

Visualization and Computer Graphics, vol. 25, no. 8, pp. 2674-2693, 2018.

[8] Bilal Alsallakh, Amin Jourabloo, Mao Ye, Xiaoming Liu, Liu Ren, Do Convolutional Neural

Networks Learn Class Hierarchy?, IEEE Transactions on Visualization and Computer

Graphics, vol. 24, no. 1, pp. 152-162, 2018.

[9] Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, Shixia Liu, Analyzing the Training Processes of

Deep Generative Models, IEEE Transactions on Visualization and Computer Graphics, vol.24,

no.1, pp.77-87, 2018.

[10] Jorge Piazentin Ono, Sonia Castelo, Roque Lopez, Enrico Bertini, Juliana Freire, Claudio Silva,

PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines, IEEE

Transactions on Visualization and Computer Graphics, vol.27, no.2, pp.390-400, 2021.

[11] Saleema Amershi, Maya Cakmak, W. Bradley Knox, Todd Kulesza, Power to the People: The

Role of Humans in Interactive Machine Learning. AI Magazine, vol.35, no.4, pp.105-120,

2014.

[12] Heungseok Park, Jinwoong Kim, Minkyu Kim, Ji-Hoon Kim, Jaegul Choo, Jung-Woo Ha and

Nako Sung, VISUALHYPERTUNER: VISUAL ANALYTICS FOR USER-DRIVEN

HYPERPARAMTER TUNING OF DEEP NEURAL NETWORKS, 2019.

https://www.digiarc.aist.go.jp/publication/aiqm/
https://www.sciencedirect.com/science/article/pii/S0925231220318476
https://www.sciencedirect.com/science/article/pii/S0925231220318476

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

71

Chapter 3:

[13] Gontijo-Lopes, R., Smullin, S. J., Cubuk, E. D., and Dyer, E., Affinity and Diversity:

Quantifying Mechanisms of Data Augmentation. arXiv preprint arXiv:2002.08973, 2020.

[14] Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q., RandAugment: Practical Automated Data

Augmentation with a Reduced Search Space. In Neural Information Processing Systems, 33,

2020.

[15] Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D., Mixup: Beyond Empirical Risk

Minimization. In International Conference on Learning Representations, 2018.

[16] Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Lopez-Paz, D., and Bengio, Y.,

Manifold Mixup: Better Representations by Interpolating Hidden States. In International

Conference on Machine Learning, pp. 6438–6447, PMLR, 2019.

[17] Kim, J-H., Choo, W., and Song, H. O., Puzzle mix: Exploiting saliency and local statistics for

optimal mixup. In International Conference on Machine Learning, 2020.

[18] Beckham, C., Honari, S., Verma, V., Lamb, A., Ghadiri, F., Hjelm, R. D., Bengio, Y., and Pal, C. On

adversarial mixup resynthesis. In Neural Information Processing Systems, 2019.

Chapter 4:

[19] Nakajima, S., Quality Issues in Machine Learning from Software Engineering Viewpoints,

Maruzen Publisher, 2020. (in Japanese)

[20] Pei, K., et al., DeepXplore: Automated Whitebox Testing of Deep Learning Systems, In Proc.

26th SOSP, 2017, pp.1-18.

[21] Nakajima, S., Distortion and Faults in Machine Learning Software, In Post-Proc. 9th

SOFL+MSVL, 2020, pp.29-41.

[22] Ma, L., et al., DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems, In

Proc. ASE, 2018, pp.120-131.

[23] Tian, Y., et al., DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous

Cars, In Proc. 40th ICSE, 2018, pp.303-314.

[24] Zhang, M., et al., DeepRoad: GAN-Based Metamorphic Testing and Input Validation

Framework for Autonomous Driving Systems, In Proc. ASE, 2018, pp.132-142.

[25] Zhang, P, et al., CAGFuzz: Coverage-Guided Adversarial Generative Fussing Testing of Deep

Learning Systems, arXiv:1911.07931, 2019.

[26] Harel-Canada, F., et al., Is Neuron Coverage a Meaningful Measure for Testing Deep Neural

Networks? In ESEC/FSE, 2020, pp.851-862.

[27] Kim, J. et al., Guiding Deep Learning System Testing Using Surprise Adequacy, In Proc. 41st

ICSE, 2019, pp.1039-1049.

Chapter 5:

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

72

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, The MIT Press 2016.

[29] Simon Haykin, Neural Networks and Learning Machines (3ed.), Pearson India 2016.

[30] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Anath Grama, MODE:

Automated Neural Network Model Debugging via State Differential Analysis and Input

Selection, In Proc. 26th ESE/FSE, pp.175-186, 2018.

[31] Shin Nakajima, Software Testing with Statistical Partial Oracles – Applications to Neural

Network Software, In Proc. 10th SOFL+MSVL, pp.275-192, 2021.

[32] Shin Nakajima and Tsong Yueh Chen, Generating Biased Dataset for Metamorphic Testing of

Machine Learning Programs, In Proc. 31st ICTSS, pp.56-64, 2019.

[33] Gregor Montavon, Genevieve B. Orr, and Klaus-Robert Muller (eds.), Neural Networks: Tricks

of the Trade (2ed.), Springer 2012.

[34] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov, Membership Inference

Attacks Against Machine Learning Models, arXiv:1610.05820v2, 2017.

[35] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha, Privacy Risk in Machine

Learning: Analyzing the Connection to Overfitting, arXiv:1709.01604v5, 2018.

[36] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng Wang, Haixu Tang, Carl

A. Gunter, and Kai Chen, Understanding Membership Inferences on Well-Generalized

Learning Models, arXiv:1802.04489, 2018.

[37] Charu C. Aggarwal, Outlier Analysis (2ed.), Springer 2017.

[38] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer, Replux: An

Efficeint SMT Solver for Verifying Deep Neural Networks, In Proc. 29th CAV, pp.97-117, 2017.

[39] Pang Wei Koh and Percy Liang, Understanding Black-box Predictions via Influence

Functions, arXiv:1703.04730v3, 2020.

[40] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana, DeepXplore: Automated Whitebox

Testing of Deep Learning Systems, In Proc. 26th SOSP, pp.1-18, 2017.

[41] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting

Su, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. DeepGauge: Multi-Granularity Testing

Criteria for Deep Learning Systems, In Proc. 33rd ASE, pp.120-131, 2018.

[42] Yizhen Dong, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao, Xinyu Wang, Li

Wang, Jin Song Dong, and Dai Ting. There is Limited Correlation between Coverage and

Robustness for Deep Neural Networks. arXiv:1911.05904, 2019.

[43] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, and Miryung Kim, In Proc. 28th

ESEC/FSE, pp.851-862, 2020.

[44] Shin Nakajima, Distortion and Faults in Machine Learning Software, In Proc. 9th SOFL+MSVL,

pp.29-41, 2019.

[45] Stephanie Abrecht, Maram Akila, Sujan Sai Gannamaneni, Konrad Groh, Christian

Heinzemann, Sebastian Houben, and Matthjas Woehrle, Revisiting Neuron Coverage and Its

Application to Test Generation, In Proc. SAFECOMP 2020 Workshop, pp.289-301, 2020.

[46] National Institute of Advanced Industrial Science and Technology (AIST), Machine Learning

Quality Management Guideline (1st English Edition), Chapter 4, Digital Architecture

Research Center, Cyber Physical Security Research Center, Artificial Intelligence Research

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

73

Center, Technical Report DigiARC-TR-2022-01/ CPSEC-TR-2022002.

https://www.digiarc.aist.go.jp/publication/aiqm/

Chapter 6:

[47] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus, Intriguing properties of neural networks, The International

Conference on Learning Representations (ICLR 2014), pp.1-10, 2014.

https://arxiv.org/abs/1312.6199

[48] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer, Reluplex: An

Efficient SMT Solver for Verifying Deep Neural Networks, International Conference on

Computer-Aided Verification (CAV), 2017. https://arxiv.org/abs/1702.01135

[49] Vincent Tjeng, Kai Xiao, and Russ Tedrake, Evaluating robustness of neural networks with

mixed integer programming, International Conference on Learning Representations (ICLR),

2019. https://arxiv.org/abs/1711.07356

[50] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit

S. Dhillon, and Luca Daniel, Towards Fast Computation of Certified Robustness for ReLU

Networks, International Conference on Machine Learning, PMLR 80, pp.5276-5285, 2018.

https://arxiv.org/abs/1804.09699

[51] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel, CNN-Cert: An

Efficient Framework for Certifying Robustness of Convolutional Neural Networks, The

Thirty-Third AAAI Conference on Artificial Intelligence (AAAI 2019), pp.3240-3247, 2019.

https://arxiv.org/abs/1811.12395

[52] Tsui-Wei Weng, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan

Oseledets, and Luca Daniel, PROVEN: Verifying Robustness of Neural Networks with a

Probabilistic Approach, International Conference on Machine Learning (ICML 2019), PMLR

vol. 97, pp.6727-6736, 2019. http://proceedings.mlr.press/v97/weng19a.html

[53] Nicholas Carlini and David Wagner, Towards Evaluating the Robustness of Neural Networks,

IEEE Symposium on Security and Privacy (SP), pp.39-57, 2017.

https://arxiv.org/abs/1608.04644

[54] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh,

and Luca Daniel, Evaluating the Robustness of Neural Networks: An Extreme Value Theory

Approach, International Conference on Learning Representations (ICLR 2018), 2018.

https://arxiv.org/abs/1801.10578

[55] Eric Wong and J. Zico Kolter, Provable defenses against adversarial examples via the convex

outer adversarial polytope, International Conference on Machine Learning (ICML 2018),

PMLR vol. 80, pp.5283-5292, 2018. https://arxiv.org/abs/1711.00851

[56] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana,

Certified Robustness to Adversarial Examples with Differential Privacy, The IEEE

Symposium on Security and Privacy (SP), 2019. https://arxiv.org/abs/1802.03471

[57] Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter, Certified Adversarial Robustness via

https://www.digiarc.aist.go.jp/publication/aiqm/
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1702.01135
https://arxiv.org/abs/1711.07356
https://arxiv.org/abs/1804.09699
https://arxiv.org/abs/1811.12395
http://proceedings.mlr.press/v97/weng19a.html
https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1801.10578
https://arxiv.org/abs/1711.00851
https://arxiv.org/abs/1802.03471

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

74

Randomized Smoothing, The 36th International Conference on Machine Learning (ICML

2019), 2019. https://arxiv.org/abs/1902.02918

[58] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian

Vladu, Towards Deep Learning Models Resistant to Adversarial Attacks, The Sixth

International Conference on Learning Representations (ICLR 2018), 2018.

https://arxiv.org/abs/1706.06083

Chapter 7:

[59] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio,

Fantastic Generalization Measures and Where to Find Them, International Conference on

Learning Representations (ICLR 2020). https://arxiv.org/abs/1912.02178

[60] Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan

Caballero, Linbo Wang, Ioannis Mitliagkas, and Daniel M. Roy, In search of robust measures

of generalization, NeurIPS 2020. arXiv:2010.11924. https://arxiv.org/abs/2010.11924

[61] Konstantinos Pitas, Mike Davies, and Pierre Vandergheynst, PAC-Bayesian Margin Bounds

for Convolutional Neural Networks, arXiv:1801.00171, 2018.

https://arxiv.org/abs/1801.00171

[62] Ilja Kuzborskij and Christoph H. Lampert, Data-Dependent Stability of Stochastic Gradient

Descent, 2017. arXiv:1703.01678. https://arxiv.org/abs/1703.01678

[63] Andrew Y. K. Foong, Wessel P. Bruinsma, David R. Burt, and Richard E. Turner, How Tight

Can PAC-Bayes be in the Small Data Regime? Neural Information Processing Systems

(NeurIPS), 2021. https://arxiv.org/abs/2106.03542

[64] Guillermo Valle-Pe rez and Ard A. Louis, Generalization bounds for deep learning,

arXiv:2012.04115v2, 2020. https://arxiv.org/abs/2012.04115

[65] Saurabh Garg, Sivaraman Balakrishnan, J. Zico Kolter, and Zachary C. Lipton, RATT:

Leveraging Unlabeled Data to Guarantee Generalization, ICML 2021.

arXiv:2105.00303. https://arxiv.org/abs/2105.00303

[66] Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz,

Non-vacuous Generalization Bounds at the ImageNet Scale: a PAC-Bayesian Compression

Approach, ICLR 2019. https://arxiv.org/abs/1804.05862

[67] Gintare Karolina Dziugaite and Daniel M. Roy, Computing Nonvacuous Generalization

Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training

Data, Thirty-Third Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

arXiv:1703.11008. https://arxiv.org/abs/1703.11008

[68] Marí a Pe rez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesva ri, Tighter risk

certificates for neural networks, Journal of Machine Learning Research, 2021.

arXiv:2007.12911. https://arxiv.org/abs/2007.12911

[69] Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From Theory

to Algorithms, Cambridge University Press, 2014.

https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

https://arxiv.org/abs/1902.02918
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1912.02178
https://arxiv.org/abs/2010.11924
https://arxiv.org/abs/1801.00171
https://arxiv.org/abs/1703.01678
https://arxiv.org/abs/2106.03542
https://arxiv.org/abs/2012.04115
https://arxiv.org/abs/2105.00303
https://arxiv.org/abs/1804.05862
https://arxiv.org/abs/1703.11008
https://arxiv.org/abs/2007.12911
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

75

[70] Oliver Catoni, PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical

Learning, Institute of Mathematical Statistics, Lecture Notes-Monograph Series, vol. 56,

2007. https://www.jstor.org/stable/i20461497

[71] Andreas Maurer, A Note on the PAC Bayesian Theorem, arXiv:cs/0411099, 2004.

https://arxiv.org/abs/cs/0411099

[72] John Langford, Tutorial on Practical Prediction Theory for Classification, JMLR, vol.6, No.10,

pp.273–306, 2005. https://jmlr.org/papers/v6/langford05a.html

Chapter 8:

[73] X. Ma, Characterizing adversarial subspaces using Local Intrinsic Dimensionality, 2018.

[74] D. Meng , Magnet: a two-pronged defense against adversarial examples, in Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017.

[75] W. Xu, Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks, in

Proceedings of the 2018 Network and Distributed Systems Security Symposium (NDSS),

2018.

[76] Shiqing Ma, NIC: Detecting Adversarial Samples with Neural Network Invariant Checking,

Network and Distributed Systems Security Symposium (NDSS), NDSS 2019.

[77] National Institute of Advanced Industrial Science and Technology (AIST), AI Bridging Cloud

Infrastructure, https://abci.ai/ja/

[78] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document

recognition, Proceedings of the IEEE, vol. 86, no. 11, pp.2278–2324, 1998. [Online].

Available: http://yann.lecun.com/exdb/mnist/

[79] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images, 2009.

[80] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, Labeled faces in the wild: A database

for studying face recognition in unconstrained environments, University of Massachusetts,

Amherst, Tech. Rep. 07-49, October 2007.

[81] Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben Feinman, and Patrick McDaniel.

cleverhans v1.0.0: an adversarial machine learning library. arXiv preprint arXiv:1610.00768,

2016.

[82] CleverHans, https://github.com/cleverhans-lab/cleverhans

[83] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori, Density Ratio Estimation in

Machine Learning, Cambridge University Press, 2012.

Chapter 9:

[84] Yoshihiro Okawa and Kenichi Kobayashi, A Survey on Concept Drift Adaptation

Technologies for Unlabeled Data in Operation, Proceedings of the 35th Annual Conference of

the Japanese Society for Artificial Intelligence, pp.1-4, 2021 (in Japanese),

https://doi.org/10.11517/pjsai.JSAI2021.0_2G4GS2f03.

[85] Joa o Gama, Indre Z liobaite , Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia,

https://www.jstor.org/stable/i20461497
https://arxiv.org/abs/cs/0411099
https://jmlr.org/papers/v6/langford05a.html
https://abci.ai/ja/
http://yann.lecun.com/exdb/mnist/
https://github.com/cleverhans-lab/cleverhans
https://doi.org/10.11517/pjsai.JSAI2021.0_2G4GS2f03

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
2nd English edition DigiARC-TR-2023-02 / CPSEC-TR-2023002

76

A survey on concept drift adaptation, ACM Computer Surveys, vol. 46, no. 4, pp.1-37, 2014.

[86] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joa o Gama, and Guangquan ZhangJ, Learning under

Concept Drift: A Review, in IEEE Transactions on Knowledge and Data Engineering, vol. 31,

no. 12, pp. 2346-2363, 2019.

[87] Tsutomu Ishida, Hiroaki Kingetsu, Yasuto Yokota, Yoshihiro Okawa, Kenichi Kobayashi, and

Katsuhito Nakazawa, Evaluation of Concept Drift Detection Methods for Unlabeled Data in

Operation, Proceedings of the 34th Annual Conference of the Japanese Society for Artificial

Intelligence, pp.1-4, 2020 (in Japanese),

https://doi.org/10.11517/pjsai.JSAI2020.0_4Rin105.

[88] Yoshihiro Okawa and Kenichi Kobayashi, Recent Research Trends in Unsupervised

Adaptation Techniques for Data Changes, Proceedings of the 36th Annual Conference of the

Japanese Society for Artificial Intelligence, pp.1-4, 2022 (in Japanese),

https://doi.org/10.11517/pjsai.JSAI2022.0_3Yin240.

https://doi.org/10.11517/pjsai.JSAI2020.0_4Rin105
https://doi.org/10.11517/pjsai.JSAI2022.0_3Yin240

	

