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Foreword 

 

In the project "Research and Development on the Quality Assessment Reference and Testbed 

of Machine-Learning /artificial intelligence systems" (JPNP20006) commissioned by the New 

Energy and Industrial Technology Development Organization (NEDO), we are developing 

Machine Learning Quality Management Guidelines [1] to explain the quality of machine learning. 

While developing the guidelines, we have also been researching and developing techniques for 

evaluating and improving the quality of machine learning. Although this research and 

development is still ongoing, since we have obtained technical knowledge on the quality 

evaluation described in the Machine Learning Quality Management Guidelines, we report on the 

progress of this research and development for the recent three years (FY 2019~2021). 
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1 Introduction 

Machine Learning Quality Management Guideline has been developed to clearly explain the 

quality of various industrial products including statistical machine learning (3rd Edition [1]). The 

third edition of the guideline focuses on the nine internal quality characteristics (e.g., Stability of 

the trained model, Reliability of underlying software system, etc.) for machine learning systems, 

but techniques for evaluating and improving these internal quality characteristics have not been 

sufficiently established yet. This document reports the current results on survey, research, and 

development of techniques for evaluating and improving the internal quality characteristics, 

which are being conducted for supporting the development of the guideline. 

1.1 Overview of this research and development 

Figure 1.1 shows the relationship between the machine learning quality evaluation and 

improvement techniques (the center yellow boxes in Figure 1.1, where the number in each box 

shows the chapter number explained in this report) that were researched and developed for the 

recent three years (FY 2019~2021). The relations to the phases of the machine learning model 

lifecycle and the nine internal quality characteristics are also shown. The techniques are briefly 

introduced here, and the details are explained in Chapters 2 ~ 9. 

 

 

Figure 1.1 Machine learning quality evaluation and improvement techniques in this report 

– Visualization of Machine Learning Models (in Chapter 2) : 

To support the quality evaluation work of machine learning models, we attempted to 

visualize the difference and comparison results between multiple models and the 

sensitivity of the workers (annotators and model designers) reflected in each model. 

We proceeded with the implementation of a tool to visualize the work procedures of 

the workers involved in creating the models and their influence on the models with 
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multiple views[2][3]. 

 

– Improved Quality through Better Application of Data Augmentation (in Chapter 3): 

To improve the data-diversity obtained by data augmentation and increase accuracy 

and stability in deep learning, we devised new two data augmentation methods with 

simple algorithms (FC-mixup and Latent DA) and report the results of their impact on 

generalization performance in experiments [4]. In addition, for the Latent DA method, 

we have been developing AdaLASE, for dynamically selecting appropriate layers for the 

data augmentation. 

 

– Debug-Testing of DNN Software (in Chapter 4): 

The failures of DNN (Deep Neural Network) models can be considered from two 

viewpoints of causes. One of them is the direct cause during inference (by prediction 

and inference programs) and the other one is the root cause during training (by 

training and learning programs, training models, and training data). We proposed an 

indicator and an analysis method for evaluating the presence of bugs in training 

programs by the internal information (e.g., neuron coverage) of DNN models, and then 

confirmed that the indicator is useful by experiments [5]. 

 

– Debugging and Testing of Training Data (in Chapter 5): 

For the case that failures in DNN (Deep Neural Network) models are caused by training 

data bias, we researched methods for detecting such bias from two quality viewpoints:  

model accuracy and model robustness. We proposed a method to evaluate the bias by 

the internal states (e.g., neuron coverage) in the DNN models and confirmed that the 

method is useful for debugging the training data by experiments. 

 

– Evaluation and Improvement of Robustness (in Chapter 6): 

To evaluate and improve robustness of machine learned models, we report on the 

results of a survey on methods to measure the maximum safe radius (the maximum 

value of noise that can be guaranteed not to cause misclassifications) as a measure of 

robustness for input noise including adversarial examples, and methods to increase the 

safe radius. 

 

– Generalization Bounds of Machine-Learned Models (in Chapter 7): 

To evaluate the generalization performance of machine-learned models, we report on 

the results of a survey on theorems for generalization bounds, that are the upper 

bounds on the expected values of the error rates (i.e., generalization errors) for all 

inputs, including unseen data-samples. Then, we confirmed that (perturbated) 

generalization bounds based on testing errors (i.e., test-set bounds) can be used for 

evaluating the generalization performance, by experiments. 
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– Adversarial Example Detection (in Chapter 8): 

To establish a practical method for detecting adversarial examples, we report on the 

results of a survey on the state-of-the-art adversarial example detection methods and 

classifies them into four main categories, and then present the results of follow-up 

experiments on representative methods. Consequently, we confirmed that NIC method 

shows the highest detection rate. Then, we constructed the NIC framework for 

detecting adversarial examples based on the NIC method and evaluated it by the 

Kullback-Leibler divergence for explaining the reason why the NIC method is effective. 

 

– AI Quality Management in Operation (in Chapter 9): 

To maintain quality of machine learning models even for unseen data and/or changing 

trends during operation, we report on the results of a survey on detection and 

adaptation methods for changes in input-data distribution over time (e.g., concept 

drift), and also a survey on the latest unsupervised domain adaptation methods (e.g., 

label-shift). The surveys include not only supervised methods but also unsupervised/ 

semi-supervised methods that are promising approaches from the viewpoints of 

operational costs and practical adaptability. 
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2 Visualization of Machine Learning Models 

Information visualization is becoming a popular method to support the analysis of the 

structure and behavior of machine learning models, which are known as black boxes. We have 

started research on a new method for visualizing machine learning models with the following 

two objectives: 

– Visualization of differences and comparison results between multiple models 

➢ Implementation of visualization based on expressions that are easy for humans to 

interpret and understand 

– Visualization of the sensitivity of workers (annotators of training data, designers of 

model structures) reflected in the model 

➢ Proposal of new factors that can be used for quality assessment 

In this chapter, we first describe the results of a survey of recent machine learning model 

visualization techniques. Then, we introduce the results of a prototype visualization tool for 

observing model and worker information, developed in 2020-2021, and our future 

implementation policy. 

2.1 Survey on methods to support using machine learning 

The basic purpose of visualization methods for machine learning is to improve the 

interpretability of models, and this is closely related to XAI (Explainable AI), which has attracted 

attention in recent years. There are no definitive definitions or evaluation methods for XAI, 

however, many papers about the classification of XAI are published, and we can devise 

visualization objectives and methods along these lines. In [6], the approaches to increase 

interpretability are classified into four categories: 

(1) Total explanation (Approximation of a complex model structure by a simple model) 

(2) Partial explanation (Explaining the rationale for decisions about model output results) 

(3) Design of explainable models (Creation of readable models at the design stage) 

(4) Explanation of the deep learning model (e.g., Highlighting the parts of the image data 

that the model recognizes) 

Especially (2) and (4) have much room for contribution by visualization. These machine learning 

visualization methods are continuously being studied, and the number of survey papers is 

increasing due to the diversity of applications and target cases. For example, Hohman et al. [7] 

described and classified deep learning visualization methods according to the 5W1H elements. 

It also presents several overall directions and issues in the field of deep learning visualization. 

Especially "improving interactions for model evaluation" and "improving interpretability 

through active human involvement in models” are closely related to our research, which aims to 

develop visualization methods for quality evaluation.  
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As research on machine learning visualization progresses and becomes popular in the real 

world, there is a growing tendency for complex analysis to be performed in a single visualization 

view. In the past, visualization methods basically focused on detailed analyses of single models 

specialized in either data ([8]) or model structure ([9]). However, in recent years, research has 

been conducted on combined visualization methods for data and model structure, as well as 

methods that aim to compare multiple models. The number of elements that make up a machine 

learning model is enormous, and it takes a lot of time and effort to create visualization results 

for the number of models and compare them side by side. Besides, the differences in structure 

and accuracy between the models to be compared are often small and features of the models 

may be overlooked. Therefore, there is a high need for a visualization method that uses 

expressions that emphasize the differences so that the differences can be found efficiently within 

a limited screen. (For example, in [10], the pipeline from data input to output, hyperparameter 

values, etc. for more than 10 models can be compared on a single screen.) 

So far, we have introduced trends and examples of visualization methods regarding the 

properties and accuracy of the models themselves. In parallel with this, we have also investigated 

how the workers (annotators of training data, designers of model structures) involved in model 

creation interact with the models. In fields such as image recognition, models with accuracy 

beyond human recognition capabilities have been developed, but there is a persistent suggestion, 

regardless of the field, that active human intervention is desirable to improve the accuracy of 

models. There are many papers that discuss the following items regarding the relationship 

between AI and humans and effective intervention methods in the modeling process: 

– Introduction of operations (adjustment and evaluation) to improve the accuracy of the 

model in the learning process 

– Designing an interface that is easy to use and can maintain the motivation of the 

operator 

– Collaboration with related fields such as cognitive science and psychology 

As an example, Amershi et al. examined the psychological state of workers who were 

assigned feedback to evaluate and improve several models [11]. The authors found that the 

workers preferred to be able to directly tell the correct processing steps to models. They also 

said that workers get more motivated to give more active feedback when they find their actions 

are improving the accuracy of the model. Although there seem to be few examples of 

visualization of such information about the workers themselves and the impact of each worker 

on the model, it can be adopted as a ground for quality assurance as follows: 

– Show that their knowledge is sufficiently reflected in the model's behavior when 

domain or machine learning experts participated in the creation of the model. 

– Indicate which workers' behavior is strongly reflected in the model and use this as a 

clue to identify elements (training data, parameters, etc.) that should be adjusted. 
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2.2 Visualization of model structure and worker information 

Based on the above research results, we place particular importance on "comparative 

visualization of multiple models" and "visualization of worker's sensitivity" among machine 

learning model visualization methods. We proceed to design a visualization tool with both 

properties. Figure 2.1 shows an overview of the proposed method. 

 

Figure 2.1 Overview of machine learning models and worker information visualization methods 

 Logging of differences between models 

First, we collect logs of the structure of the model to be visualized (the adjustment process 

and test results). In the current implementation, we suppose image classification as a case study 

and obtain the model designer's parameter adjustment process and test results as text files using 

Cometl.ml, a machine learning experiment management tool. For the annotators, we do not 

directly collect work logs, but indirectly evaluate their work based on how the model designers 

selected data and applied preprocessing. 

From these logs, we calculate differences between models (the amount of change from the 

model used immediately before). Differences between models are classified into three 

categories: training data, model structure, and optimization algorithm, and are calculated for 

each. The difference in training data is calculated by adding up the data used, the number of 

classes, and the difference in parameters used for preprocessing. The difference in model 

structure is obtained by creating pairs of layers that comprise the two models and summing the 

dissimilarities (differences in layer types and parameters) of each pair. For the difference in 

optimization algorithms, a constant is assigned if the algorithm types are different. If they are 

the same, the difference is calculated from the difference in parameters. After obtaining the three 

types of differences, we obtain the overall change in the model by summing these values. 
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 Developing prototype of model difference visualization tool 

In 2020, we implemented views on basic information such as model structure and output 

results, and in 2021, added views to visualize the progress of model adjustments and testing by 

workers.  

Figure 2.2 shows the overview of prototype visualization views, which visualize the results 

of MNIST for two simple models developed in 2020. Assuming that the main users of this tool 

would be model designers and considering the possibility that users who were not familiar with 

visualization would be included, we combined basic visualization methods (line graphs, bar 

graphs, etc.) and implemented them with the policy of actively linking them (e.g., highlighting 

related parts). 

 

Figure 2.2 Visualization views on model structure and output results 

 

We created the tool on JupyterLab, mainly using the machine learning library PyTorch and 

the visualization library Bokeh, so that we could compare the features of the two models: 

(1) Network of each model structure 

(2) Bar graph of output results for each class 

① Visualization for each model 

② Visualization of the difference between two models 

(3) Scatter plot of output result correlation between two selected classes for each model 

(4) Line graph of accuracy 

(5) Thumbnail list of data classified with particularly high (low) confidence 
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Figure 2.3 shows an example of the results of classifying the output to MNIST for two models. 

The horizontal axis represents the class from 0 to 9, and the vertical axis represents the amount 

of data. The color-coding of each bar represents the combination of correct (T) and incorrect (F) 

answers for the two models, for example, where TF (FT) means that only model 1 (2) correctly 

classified. Immediately after the start of learning (Figure 2.3, left), model 1 had a high percentage 

of correct answers in classes 0, 1, and 7, and model 2 had a high percentage of correct answers 

in classes 2, 6, and 8, indicating that each model had different strengths. At the advanced stage 

of learning (Figure 2.3, right), both models had high percentages of correct answers in many 

classes. Besides, model 1 has a high percentage of correct answers, including classes 3, 4, 5, and 

7, which model 2 is not good at, indicating that model 1 is more advanced in learning than model 

2 at this stage. 

 

Figure 2.3 Examples of comparing the output results of two models 

 

Next, we introduce the visualization results generated by the time-series visualization 

function for model test results, created in 2021. Figure 2.4 visualizes the amount of change in 

accuracy and model structure when multiple image classification models are tested in sequence. 

The horizontal axis represents the order of the tests, and the vertical axis means top-1 for each 

model. The boxes colored gray to yellow correspond to one model. The tool visualizes three small 

icons inside each box, except for the box for the first model used. The colors of these icons and 

boxes represent the amount of change from the model used immediately before, with higher 

saturation meaning greater change. Specifically, the top icon (red) represents the training data, 

the middle icon (blue) represents the model structure, and the bottom icon (green) represents 

the amount of change related to the optimization algorithm. The boxes (yellow) reflect the total 

amount of these changes. The center coordinates of each box are connected by edges to clearly 

indicate the change in accuracy. 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology 
2nd English edition  DigiARC-TR-2023-02 / CPSEC-TR-2023002 

10 

 

 

Figure 2.4 An example of visualization of a worker's model adjustment history 
 

Table 2.1 Parameters of the model used for work history visualization 

 

The area circled in red in Figure 2.4 shows the visualization results of the process of adjusting 

the ResNet model trained on CIFAR-100. Referring to the hyperparameter tuning scenario 

conducted in [12], the model was trained and tested 6 times and logged while changing the 

parameters as shown in Table 2.1. 𝑙 is the learning rate, 𝑚 is the momentum value. 𝑝 and 𝑎 

are the erasing probability and max erasing area when random erasing was applied to the 

training data. 𝑑 is the depth of the ResNet model used.  

The numbers in the red boxes in Figure 2.4 correspond to the Indexes in Table 2.1; in 2 and 

5, of the three icons, the top icon representing changes in the training data is highlighted in 

orange. This reflects the fact that the values of 𝑝 and 𝑎, parameters related to the training data, 

were changed significantly when going from model 1 to 2 and from 4 to 5. Similarly, in 3 and 4, 

the bottom icons are highlighted in yellow-green, indicating changes related to the optimization 

algorithm. Specifically, it reflects the change in 𝑙 and 𝑚. The color of the box also indicates that 

the third model had the largest amount of change from the model used immediately prior. 

Compared to model 2, four parameters (𝑙, 𝑚, 𝑝, and 𝑎) have been changed. On the other hand, 

the overall change in model accuracy was small, indicating that the impact of this parameter 

adjustment procedure was limited.  

The box to the right of the red area plots the progress of the test after changing the training 

data to MNIST and ImageNet. The two boxes near the center of Figure 2.4 are plotted in bright 

yellow, which coincides with the timing of the change in the data set and model used. Thus, we 

can observe the long-term working history of multiple cases, in addition to showing the detailed 

adjustment process of a particular model. 
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2.3 Future work 

In future work, we would like to work on extending the visualization function with the 

following policy. First, we will aim to visualize the results of long-term evaluation of models and 

work contents and recommendations for improvement for a single or a small number of workers. 

Then, we will compare the work patterns of a large number of workers and visualize the 

similarity and classification results among models or workers from an overhead perspective. By 

observing these visualization results, we would like to be able to estimate the skill level of 

workers and classify their work characteristics (work patterns). 
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3 Improved Quality through Better Application of Data Augmentation 

This chapter describes the results of developing a new method for applying data 

augmentation in neural network learning and evaluating its effect to learning quality through 

experiments. 

3.1 Research purpose 

Data augmentation is a technique to increase the number of samples by adding deformations 

to the data, and it is highly effective in deep learning, which has a tendency of performance 

degradation when the number of training samples is small. On the other hand, the effectiveness 

of data augmentation strongly depends on the data used, so the selection of data augmentation 

methods and the parameters of each method must be set appropriately. However, theoretical 

analysis of data augmentation is difficult, and general ways to use it have not yet been 

established. This leads to unintentional and inappropriate use, which in turn compromises the 

quality of learning. In fact, there are many cases that training performance is degraded by setting 

inappropriate values for the amount of deformation of each data augmentation method, such as 

mask size or rotation angle, or where the user is puzzled as to what data augmentation method 

to select for the actual data to be used.  

Therefore, to move away from the empirical use of data augmentation, this study focused on 

data diversity. Increasing diversity is the essential goal of data augmentation, and it has been 

demonstrated in the work of [13] that increasing diversity has a significant impact on improving 

generalization performance. Recently, a technique called RandAugment [14], which dynamically 

applies randomly selected operations from multiple data augmentation operations during 

training, has attracted much attention, but while it greatly improves diversity, effectively using it 

is not easy because many parameters need to be adjusted. In this study, we proposed the 

following two new methods for applying data augmentation related to data diversity, and 

improved the algorithms and evaluated their performance. 

– We apply data augmentation at various layers of the neural network, including hidden 

layers, and perform automatic optimization of the applied layer (Section 3.2). 

– We improve the Mixup method [15], a promising data augmentation method, and 

propose a new way to mix samples (Section 3.3). 

3.2 Improved application layer for data augmentation 

 Data augmentation at hidden layers 

Generally, data augmentation is considered to be applied to input data, but in neural 

networks, it is also possible to apply data augmentation to hidden layers. There are several 

previous studies on this subject, but most of them are not versatile methods, such as Manifold 
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mixup [16], which limits the method to mixup [15], or other methods that require specific 

networks and datasets. In this study, we considered applying various data augmentation 

methods used for image data, such as affine transformation and mask processing, in the hidden 

layers. Since features are extracted hierarchically in CNNs, data augmentation can be applied in 

various layers randomly selected for each minibatch to generate a wide variety of samples. As 

with application to input images, data augmentation can be applied to the feature maps obtained 

at the intermediate layers, making implementation easy. 

An example of actual application of mask processing and translation to an input image and 

feature map is shown in Figure 3.1. Here, a sample is input to the model in training, and the 

images are shown in the upper row, aligned in size, immediately after data augmentation was 

applied at different layers with the same parameters (mask position and translation amount). 

The feature maps in the final layer of the sample are shown in the lower row. They are different 

images depending on the layer where the data augmentation was applied. This result shows that 

data augmentation at various layers leads to an increase in the diversity of the generated data 

and results in learning different from when data augmentation is applied only to the input data. 

 

 
 

Figure 3.1 Example of applying data augmentation to input images and feature maps obtained at 

hidden layers 

 

To compare the performance of data augmentations in the input layer and that in feature 

maps, we used various data augmentations and obtained test accuracies for models trained with 

supervision. Here, WideResNet28-10 was trained for 200 epochs using the CIFAR-10, Fashion-

MNIST, and SVHN (without extra data) datasets. The results are shown in Figure 3.2. In each 

figure, the horizontal axis represents the accuracy [%] of the conventional method (Input DA) 

and the vertical axis represents the accuracy of the proposed method (Latent DA). As can be seen 

from these results, the proposed method tends to show higher accuracy than the conventional 

method, and the proposed method presented higher accuracy even in cases where the 

conventional method presented lower accuracy, such as the results using Crop. These results 

indicate that the diverse samples generated by the application of data augmentation to random 

layers are effective in improving performance. 

 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology 
2nd English edition  DigiARC-TR-2023-02 / CPSEC-TR-2023002 

14 

 

 
Figure 3.2 Comparison of test accuracy between input DA and latent DA 

 Selecting appropriate layers for data augmentation 

Although previous studies have shown that data augmentation at hidden layers is effective, 

the question arises as to which layer is optimal for data augmentation. Although it is possible to 

find the optimal layer by repeatedly training with different layers of data augmentation and 

comparing the values of validation accuracy, it is an inefficient and impractical method because 

it increases the overall training time. Therefore, in this study, we worked on developing a method 

to dynamically discover the optimal layer for data augmentation in a single training session. 

The approach is to prepare a parameter called the acceptance rate for each layer, update the 

acceptance rate during training, and apply data augmentation in the layer selected 

probabilistically according to the acceptance rate. The updating of the acceptance rate is done 

using the gradient descent method as shown below. 

𝑞𝑙 ← 𝑞𝑙 − 𝜂
𝜕𝐿𝑣𝑎𝑙

𝜕𝑞𝑙
, 

where 𝑞𝑙 is the acceptance rate of layer 𝑙, 𝐿𝑣𝑎𝑙 is the value of the error when the validation 

data is input, and 𝜂 is the step width of the update. In practice, the values of the validation data 

should not be included in the algorithm, so the update is performed by creating pseudo-

validation data with the training data with data augmentation. In the initial state of training, all 

acceptance rates are set to equal values so that the sum is 1, and the acceptance rate is updated 

for each minibatch. This optimization is expected to improve the generalization performance by 

increasing the acceptance rate of layers suitable for data augmentation and decreasing the 

acceptance rate of layers unsuitable for data augmentation. 

We named this method Adaptive Layer Selection (AdaLASE) and compared it to conventional 

methods. Using CIFAR-10 as the data and ResNet18 as the model, we compared test accuracies 

for no data augmentation, data augmentation on input, data augmentation at random layers, and 

AdaLASE. Figure 3.3 (a) and (b) show the results using Cutout and Mixup, respectively. The mean 

and standard deviation of the accuracy for five different initial values are shown for each method. 

These results show that AdaLASE can perform as well as or better than conventional methods. 
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Future plans include a detailed analysis of how layers are selected and whether AdaLASE is 

working properly by looking at the change in acceptance rate during training. 

 

   

(a) Cutout                                 (b) Mixup 

Figure 3.3 Comparison of test accuracy between AdaLASE and conventional methods 

3.3 Proposal for a new mixing method by improving Mixup 

In actual training, data augmentation often involves the simultaneous use of multiple 

methods, such as cropping, rotating, and flipping. Therefore, we focus on the compatibility 

between methods when multiple methods are used in this way, and in particular, we consider 

discussing the compatibility from the viewpoint of data diversity. As a first step in this approach, 

we propose a new method that is a variant of an existing method and use it simultaneously with 

the original method to increase the diversity of the data generated and improve performance. 

The method for formulating the diversity is described in the work of [13]. In this study, we first 

compare only the accuracy and verify whether the proposed method improves the performance. 

Here, we have improved Mixup [15], one of the data augmentation methods. This method 

generates a new sample by linear interpolation of two samples, and takes the same ratio of linear 

interpolation for each of the input values and labels, as shown in the following equation. 

{
�̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗

�̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗  
, 

where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) represent the input values for the 𝑖-th and 𝑗-th samples, and 𝜆 is 

the mixing ratio sampled from the beta distribution. Mixup was chosen as the subject of this 

study because of its versatility and because it can be used for many numerical data, including 

not only images but also time series data, and therefore, the impact of improving the Mixup 

method would be significant. 

An improved version of mixup so that it can also be performed in a hidden layer of a neural 

network is called manifold mixup [16], but both mixups generate samples only in a localized 

region of the data distribution, on a line segment between two points, and are inappropriate for 

data sets with distributions in which the properties of the points on that line segment vary 

nonlinearly. 

The Feature Combination Mixup (FC-mixup) proposed in this study is a method of mixing 

samples in a different way from conventional mixups, and is outlined in Figure 3.4. Suppose that 

two samples A and B in the same minibatch output the features 𝑍A  and 𝑍B  in a randomly 
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selected layer. 𝑑 is the total number of features in that layer, FC-mixup randomly extracts and 

combines 𝑑𝜆 features from 𝑍A and 𝑑(1 − 𝜆) from 𝑍B and generates a new sample 𝑍X. Since 

the number of possible combinations is large for a single value of 𝜆 , different data can be 

generated depending on the random number, and thus samples can be generated over a wide 

range of the data distribution. FC-mixup is expressed as follows, so 𝑍A and 𝑍B are mixed so 

that this equation is satisfied. 

|𝑍A ∩ 𝑍X| = d𝜆 

 

 

Figure 3.4 Overview of FC-mixup 

 

This technique of generating new data by combining the parts of two data sets is also found 

in Puzzle Mix [17], but the target is limited to the input image. A similar technique is used in 

Adversarial mixup resynthesis [18], but it is limited to use in autoencoders, while FC-mixup is 

designed for more general use. To increase the diversity of the generated data, a method that 

simultaneously uses FC-mixup and Manifold mixup [16] is referred to here as the Hybrid method. 

In our experiments, we used several multi-class classification datasets to compare the 

classification accuracy of the test data between the conventional method (no data augmentation, 

mixup at the input layer [15], Manifold Mixup [16]) and the proposed method (FC-mixup, Hybrid 

method). MNIST, CIFAR-10, CIFAR-100, SVHN, and TinyImageNet were used for the data. Models 

used were a multilayer perceptron (MLP) with one intermediate layer, a small convolutional 

neural network (CNN), ResNet18, and ResNet50. In addition to the full-size data, experiments 

were conducted on reduced data with 1,000 randomly selected samples. Means and standard 

deviations in five trials with different initial values were obtained and compared. 

The results in Table 3.1 show that in most cases the proposed method gives the highest 

accuracy. Overall, FC-mixup tended to give better performance than the Hybrid method. It can 

be said that the results of the present study are promising results, indicating that using the FC-
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mixup and Hybrid methods is likely to improve the quality. Detailed analysis of the compatibility 

between data augmentation methods focusing on diversity will be the subject of future work. 

 

Table 3.1 Comparison of test accuracy on multi-class classification data 
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4 Debug-Testing of DNN Software 

In the initial development stage of Deep Neural Network software (DNN software), we ensure 

that the required functions and prediction performance are achieved through iterative trial-and-

error processes, in which three viewpoints (elaborating and refining requirements, preparing 

datasets for training, and selecting appropriate machine learning models) are considered. This 

trial-and-error process corresponds to debugging in conventional program development. In the 

case of DNN software, the debugging activities involve generating datasets for debug-testing, 

monitoring the training and learning status, and identifying and removing root causes that 

hinder the fulfilment of requirements. In the following, we will report on a debug-testing method 

investigated in FY2020, discuss the experimental results obtained, and summarize our future 

plans. 

4.1 Direct cause of failure 

A standard method of supervised DNN learning involves two types of programs: training (or 

learning), and prediction (or inference). When training data is given and a learning task to 

achieve is made clear, a learning model for the target DNN software is selected, and some design 

decisions on the method used in the training and learning process is fixed. If we use available 

open-source machine learning frameworks, we may set up several parameters of the framework. 

The next step is to construct training dataset. Then, we run the training/learning program 

(possibly provided by the machine learning framework) with the training model and training 

dataset as input, and derive a trained DNN model as a computation result. More precisely, the 

training/learning program searches for a set of weight parameter values that define the trained 

DNN model uniquely. This trained DNN model defines behavior of the prediction/inference 

program. 

From a user's point of view, a prediction/inference program is the entity to use. In the case 

of a classification learning task, for example, the program calculates certainty levels of 

probabilities of classification results for an input data. By examining the output results, we can 

determine whether the DNN software works as intended. When the program does not produce 

results as expected, we localize possible fault locations and remove them. In other words, we 

conduct debugging. 

A failure may be occurred due to a flaw somewhere in the information used in the execution 

process of the training/learning program, either in the training dataset, the training model, the 

learning mechanism, or their combinations. However, direct causes of failure in prediction/ 

inference results are attributed to the trained DNN model or set of obtained weight parameter 

values. While a root cause of failure is somewhere and often not known, the failure is attributed 

to a defect in the weight parameter values or the trained DNN model. Thus, from users' point of 

view, a certain distortion of the trained DNN model seems a direct cause of the failure [19]. A 

method to measure such distortion degrees is needed regardless of the root causes. 
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In this chapter, we investigate whether we can detect faults in DNN software with an internal 

metric to measure such distortion degrees of trained DNN models. The weight parameter values 

in the DNN models are the output of the training/learning program, but there is no direct way to 

check its validity, because those expected weight parameter values cannot be known in advance. 

If such expected parameter values were known, training/learning could be skipped. We can just 

use those known values, as embedded in a trained DNN model, to implement a prediction/ 

inference program. 

4.2 Internal indices 

This section first introduces the notion of neuron coverage (NC). We consider a learning 

model as a network of neurons. Given a threshold, neurons whose output values exceed the 

threshold are said to be activated. When the number of neurons constituting the learning model 

is N and the number of activated neurons is A, the neuron coverage is defined as the ratio of 

active neurons is (NC = A/N). In [20], NC is assumed to be criteria for test coverages of trained 

DNN models; the research work investigates how the choice of input data for evaluation affects 

NC values. 

 

Figure 4.1 Trained DNN model. 

 

In this chapter, NC is assumed to be used as an internal index [21] to represent distortion 

degrees by appropriately choosing the target neurons to be considered. Figure 4.1 shows a 

schematic diagram of the trained DNN model. NCs are defined for the neurons in the final stage 

of the middle layer (or the penultimate layer as shaded gray), but not for all the neurons in the 

trained DNN model as in [20]. 

In general, in machine learning techniques, this penultimate layer is often considered to hold 

meaningful information. For example, in the case of an image classification task, the early stages 

of the model is responsible for the correlation analysis (analysis of patterns of pixel values), 

which plays a specific role in algorithms such as image recognition, and their calculation results 

are summarized in the penultimate layer. In this chapter, we assume that direct causes of defects 

are manifested in this internal layer. Furthermore, various statistical indices can be derived 

based on NC values of this layer. We will investigate, through experiments, what derived index is 

appropriate depending on test objectives to be investigated. 

Classification Algorithm
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4.3 Experiments: method and results 

We present the results of several experiments and discuss the usefulness of the internal or 

derived indices mentioned in the previous section. First, we show the results of comparative 

experiments when a training/learning program (or a learning framework) has faults in it. In the 

following, BI is the training/learning program which is a bug-injected version of a probably 

correct program PC. 

Figure 4.2 depicts the accuracy (the percentage of reconstructed correct answers) for a test 

dataset. In the experiments, a classical fully-connected network is chosen as the learning model, 

and different number of neurons are placed in the middle layer, which implies that each model 

is of different structural capacity. When we have a sufficient number of neurons (50 on the 

horizontal axis), there is no significant difference in the accuracy between PC and BI. Thus, it is 

difficult to distinguish between the PC and BI solely by examining their accuracy values, and thus 

the presence or absence of a defect cannot be identified. In addition to this finding (Figure 4.2), 

the results of an experiment to systematically investigate the situation further (Figure 4.3) are 

presented below. 

 

Figure 4.2 Learning models of different capacities. 

 

 

Figure 4.3 Relationship with internal indices 

 

Figure 4.3 plots values of the internal index (activated neurons or neuron coverage) on the 

vertical axis. Their absolute values, for example, of 10 for BI and 30 for PC are both around 0.7, 

making it impossible to distinguish between BI and PC if we do not take into account the 

structural capacity. The indices are not usable to examine the activated states of neurons. 
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Therefore, we will study if there is an appropriate indicator to be derived from the internal index 

of NC. As a set of data (a sample), in the test dataset, leads to a collection of neuron coverages, 

we can obtain some statistics from the sample such as the mean μ  and variance σ2, and 

calculate σ/μ. Figure 4.4 shows the case where this derived index σ/μ is used on the 

horizontal axis. From the values on the vertical axis, we can find out which leaning model has 

which value by referring to Figure 4.3. 

 

Figure 4.4 Derived index 

 

Figure 4.4 shows that we can distinguish between the PC and BI. Although the internal index 

cannot distinguish between the PC and BI with different capacities (Figure 4.3), a derived index 

of σ/μ can discriminate between the PC and BI. We can see that the neuron coverage basically 

contains a piece of useful information. 

Next, Figure 4.5 is a scatter plot of classification probability using corrupted data for the 

evaluation; the horizontal axis refers to the classification output by the BI and the vertical one 

by the PC.  

 

Figure 4.5 Classification certainty for corrupted data. 

 

In Figure 4.5, a △ represents an output value for corrupted data, which is supposed to be 

distributed on the dotted line passing through the origin, if we assume that the PC and BI output 

the same value for the same data. In fact, it can be seen that □ selected from the test dataset 
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(without any corruption) mostly arranged on the dotted line. On the other hand, corrupted data 

(△) are distributed along the solid line, indicating that the PC is a better classification certainty 

than the BI. It implies that the BI, containing bugs in it, is less robust, although the accuracy 

remains the same as that of PC (Figure 4.2). 

The following experiment confirms that differences in robustness can be detected by using 

an internal index (Figure 4.6). 

 

Figure 4.6 Differences in internal indices 

 

The corrupted data described above were input, and the internal index for each input was 

plotted on the horizontal axis. The □ distributed in a group on the right side shows the results 

of PC, and the ◇ distributed in a group on the left side shows the results of BI. The scatter plot 

shows that (1) the value of the internal index of PC is large, and (2) the correlation between the 

internal index and prediction probability (certainty of classification) is negligible (0.033). Next, 

we calculate σ/μ, which is 0.0876 for PC and 0.2183 for BI. Figure 4.6 shows results that 

corrupted data affect the robustness, and that the value of σ/μ  is considered to have 

correlations with the robustness. 

Next, we conducted experiments to investigate how distorted training data affect the trained 

DNN model. We plotted the accuracy for a test dataset common to all the cases. Thus, differences 

in the vertical axis indicate a certain difference (distortion degree) in the training dataset used 

for obtaining the trained DNN model (Figure 4.7). 

 

Figure 4.7 Differences in training datasets. 
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Figure 4.7 shows the two independent series for the PC (□) and BI (◇). From top to bottom 

in a series of each measured points (from better to worse accuracy), a training dataset with a 

larger distortion is used. Because the test dataset is common, the data shift of the test data is 

relatively larger as the distortion degrees in the training data is larger. Furthermore, the accuracy 

decreases as the shift becomes large. Figure 4.7 also shows that the value of the horizontal axis 

(σ/μ) is clearly different between the PC (□) and BI (◇). It can be confirmed that the accuracy 

and the robustness suggested by the σ/μ values are two independent perspectives. 

From the above (Figure 4.7), the distortion in training dataset can be examined by the 

method based on the accuracy. As is done in practice, the method based on the accuracy is useful 

when checking the training dataset quality. On the other hand, if there is a possibility that other 

factors such as faults in a training/learning program are involved (multiple defects are assumed), 

it is desirable to examine the values of the internal and derived indices (σ/μ) at the same time. 

4.4 Related work 

Neuron coverage (NC) is a simple quantitative measure introduced in DeepXplore [20] as a 

test coverage metric. In conventional software testing, test coverage is defined in terms of the 

basic block of program codes, which is the statements executed by a given test input data. A 

program is represented as a Control Flow Graph (CFG) whose nodes refer to executable 

statements. In the simplest case, the criterion is whether or not a node in the CFG is contained 

in an execution path induced by an input test, i.e., whether or not the statements are executed. 

As a DNN model is represented as a network, a kind of graphs, metrics similar to those for CFG 

can be introduced. The neuron coverage concerns whether neurons located at nodes are 

activated (output values of these neurons exceed a specified threshold), which is comparable to 

the C0 criterion defined on the CFG. DeepXplore assumes that high NC values refer to the 

situations where high percentage of neurons are exercised by input data, and discusses how to 

generate new test input data to increase the NC values. 

Neuron coverage would be a straightforward idea analogous to the conventional test 

coverage criteria. Later, satisfying the criteria, to achieve 100% in terms of NC, is found 

empirically not difficult. New metrics are proposed to take into account correlations among 

multiple neurons or those in different layers [22], which may be comparable to more elaborated 

coverage metrics, such as C1 or the others, in conventional software testing. 

The original NC is simple and easy to use as a metric to guide or control automated test 

generation processes. Usually, a classical data augmentation method picks up a seed data, from 

which a series of new data is to be generated by pre-defined data transformation algorithms. 

New test data are successively generated until the accumulated NC values is saturated. When 

reached the situation where no increase in the NC is seen, the generation method switches a seed 

data to new one and continue the process [23]. The classical data augmentation method can be 
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replaced by other approaches such as test input generation based on GAN [24]. Test generation 

method using GAN with a help of NC is reported in [25]. Although it is a simple metric, NC is now 

considered as a practical criterion to control the automated test generation process (coverage-

guided test generations). 

Some of early works on testing pre-trained DNN models adapt application-specific 

properties as software test oracles; the DNN models for regression tasks in the auto-pilot car 

application [23][24] use the calculated steering angle as the oracle. There is also a research work 

[26] to investigate whether test inputs to increase the NC values are useful for detecting faults. 

The usefulness of NC is dependent on what are considered failures. The work [26] also indicates 

that the correlation between NC and external indices such as the accuracy is weak. In this chapter, 

based on this observation that the correlation between the two is weak, an internal index based 

on the NC is used for the test, which is not contradictory to the discussion in [26], but rather in 

the same direction. Note that the test coverage is a criterion for terminating testing, while 

detecting faults depends on whether the test input data executes corner cases. These two notions, 

the test coverage and corner cases, refer to different aspects. In fact, it has been reported that 

the enhancement of coverage does not necessarily leads to the improvement of the efficiency of 

fault detection in conventional software testing. The same findings would be applicable to cases 

of DNN testing. 

In this chapter, we use the NC value as a simple test index, from which a sort of distortion 

degrees in trained DNN model is derived [19][21]. Our approach is based on a view that faults 

in DNN models appear as inappropriate NC values, whereas existing works use NC as a criterion 

for the test coverage. In our experiments, we were able to examine the reliability of the training 

and learning programs and the robustness of the trained DNN models. These are two primary 

concerns in debug-testing. 

4.5 Conclusion 

In this chapter, we used an internal index based on the neuron coverage (NC) defined on the 

penultimate layer for representing a sort of distortion degrees in trained DNN model. The NC is 

a scalar and easy to measure, and thus can be used as a light-weight test index. It, however, 

discards the information about the individual activated neurons, and thus lacks useful 

information. In fact, Kim et al. [27] proposes a method to estimate the distribution of activated 

neuron and to discuss the usefulness of input data for testing. Distribution on such neuron values 

may be considered to have rich information. In future, we will study how to debug training 

dataset by making use of such distribution information. 
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5 Debugging and Testing of Training Data 

5.1 Three Problem Settings 

In early stages of software development, in which programs are constructed to employ Deep 

Neural Networks (DNNs) [28], debugging and testing is performed to ensure that the core DNN 

components behave as expected. This is the process of feeding appropriate data to the DNN 

components and checking whether the predicted output is exactly what is expected. If the output 

is faulty in some ways, the DNN component under test contains a defect. The purpose of 

debugging is to identify and remove such unknown defects. 

Defects in DNN components are the direct cause, but not the root cause, of failures. In the 

standard method for building DNN components [29], three distinctive components are basically 

involved: (a) the machine learning infrastructure, (b) the training model (a template of the DNN 

model), and (c) the training data. The root cause is one of them or their certain combinations 

leading to the failure that the DNN component exhibits. The problem setting of the inspection 

differs depending on where the root cause is assumed [30].  

 The basis of DNN component construction is to make use of a training dataset consisting of 

a huge number of training data and derive the information inherent in those data by means of 

statistical methods so as to obtain a DNN model (a nonlinear function) inductively. In a naive 

way, we may examine the DNN model to identify root causes. However, since the DNN model is a 

nonlinear function to exhibit some functional behavior, the software testing method using 

indirect test oracles is often employed; we feed evaluation data to the DNN model and check 

whether output results are valid or not [31]. 

 In the case (a) above, the core of the machine learning infrastructure is a numerical program 

that solves an optimization problem, and the metamorphic testing method is known to be useful 

[32]. In the case (b), the learning model is not obviously flawed. It is to find an optimal or sub-

optimal learning model for the target machine learning task, which has been, in a sense, one of 

the main challenges of the DNN technology [28]. In this chapter, we discuss the case (c), i.e., 

debugging and testing methods of training data. 

5.2 Debugging Problems of Training Data 

Debugging and testing of training data is to revise (add or delete) the training data so as to 

obtain a DNN model that exhibits the intended functional behavior. This view is based on the 

observation that the bias of the training data affects much the trained DNN model. In the 

following, we specifically consider the debugging problem of training data for supervised 

machine learning classification tasks. 
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 Model Accuracy and Model Robustness 

In the supervised task of classifying input data into 𝐶 categories, a datapoint 𝑧 is a tuple 

(𝑧 = 〈𝑥, 𝑦〉 ) consisting of two types information, a multidimensional vector 𝑥   and its correct 

answer tag (or simply a label)  𝑦   (see Figure 5.1).    The DNN model, derived from a given 

training dataset 𝑆 (𝑆 =  {𝑧(𝑘) | 𝑘 = 1, … , 𝑁 }), is inspected against input evaluation data 𝑥. Its 

output is a 𝐶 dimensional classification probability vector 𝑃𝑥 corresponding to the data 𝑥. If 

𝑃𝑥[𝑗] (the 𝑗-th component of 𝑃𝑥), the component with the largest value  𝑗, is equal to y (𝑦 =

argmax(𝑗∈[1,𝐶])𝑃𝑥[𝑗]), then the DNN model is considered to return a correct answer. In this case, 

the multidimensional vector 𝑃𝑥, in particular, the probability of the 𝑗-th component 𝑃𝑥[𝑗], is one 

of the good indicators of the model accuracy for the data 𝑥. For a collection of evaluation data 

𝐸 (𝐸 = {〈𝑥(ℓ), 𝑦(ℓ)〉 | ℓ = 1, … , 𝑀 }), Accuracy is the number of correct answers (percentage of 

correct answers) for the collection. In addition, the variability of the probabilities of the 

classification categories (sometimes referred to as Gini Impurity) is an indicator of the model 

accuracy as well. 

The accuracy for the training dataset 𝑆  and the one for the other dataset 𝐸 , different 

dataset from 𝑆 , are compared. While the accuracy for 𝑆  is good, the accuracy is sometimes 

worse for 𝐸. This phenomenon is known as overfitting to the training dataset. Usually, both 𝑆 

and 𝐸  are constructed from one large data pool 𝐷 , and are considered as different samples 

following the same data distribution; 𝐸  in this case is sometimes called a testing dataset as 

compared with the training dataset of 𝑆. When there is no overfitting where the accuracies are 

not much different each other, the DNN model is considered to exhibit good generalization 

performance. 

In the training data debugging problem, the evaluation data 𝐸  may be selected from a 

dataset other than 𝐷 . For example, in positive testing, where the goal is to confirm that the 

system exhibits the expected behavior, as in the evaluation of generalization performance, we 

can choose 𝐸  from  𝐷  , in which 𝐸  is different from 𝑆 . However, to test the behavior in 

exceptional situations, we may choose a dataset 𝐹 for the evaluation that is not included in 𝐷. 

Model accuracy, measured with the percentage of correct answers, is not a good indicator for 𝐹.  

The evaluation criterion is model robustness, which expresses how the prediction probability is 

decreased depending on how much a data in 𝐹 is deviate from data in 𝐷 or 𝑆. 

In the development in practice, if the expected prediction performance is not achieved for a 

given 𝐷, new data is collected and the training data itself is revised. Then, the DNN components 

are derived using the new training dataset, namely in an iterative manner. Moreover, during 

testing, we evaluate the model accuracy and model robustness in view of both positive and 

exceptional testing.  

 Memorization of Training Data 

Overfitting or overlearning significantly affects the prediction performance (the model 
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accuracy and model robustness) of DNN models. Therefore, basic machine learning methods 

have been studied extensively to mitigate those problems; the study includes regularization or 

dropout [33]. In spite that such methods are adopted, the expected prediction performance 

cannot be obtained if the training dataset is inadequately biased. The debugging problem of 

training data is to improve the prediction performance of DNN models by revising the training 

dataset. Simply, it is to eliminate the inappropriate bias. However, it is difficult to evaluate the 

degree of bias as well as the appropriateness or inappropriateness of the bias. 

One traditional approach to evaluate the bias of the training data (sample) is to examine 

statistical characteristics of the sample. For example, given that 𝑆 = {〈𝑥(𝑘), 𝑦(𝑘)〉 | 𝑘 = 1, … , 𝑁 } , 

let 𝑆𝐶 = {〈𝑥, 𝑐〉 | 〈𝑥, 𝑐〉 ∈ 𝑆 and 𝑐 = 1, … , 𝐶 } where 𝑐 is a correct answer tag. If the sizes of 𝑆𝐶   

are equal in size, then we may say that there is no bias among 𝑆𝐶 from the viewpoint of the 

correct answer tag. However, each 𝑆𝐶 follows some data distribution 𝜌𝐶  and we don't know 

whether 𝑆𝐶 is sampled faithfully in regard to 𝜌𝐶 . To check this, we need to know 𝜌𝐶 , however, 

the data 𝑥 is multidimensional, and such a multidimensional data distribution is not easy to 

estimate. 

Alternatively, the prediction performance of DNN models is investigated by testing results 

with input evaluation data. DNN models derived from the same training data may exhibit 

different prediction performance, depending on the method of the machine learning. In other 

words, it is not enough to examine the statistical characteristics of the training data for the 

purpose of debugging the training data, but it is also necessary to consider how the bias of the 

training data is reflected in the trained DNN model. 

The relationship between DNN models and training data bias can be discussed in terms of 

the DNN models remembering the labels of the training data. Now, when the training data 𝑆 

contains a datapoint 〈𝑎, 𝑡〉 (〈𝑎, 𝑡〉 ∈ 𝑆), we can construct 𝑆′ so that the 〈𝑎, 𝑡〉 is removed from 

the training data 𝑆 (𝑆′ = 𝑆 ∖ {〈𝑎, 𝑡〉}). Let each DNN model obtained by training with either 𝑆 

or 𝑆’ be 𝑀 or 𝑀’ respectively. Then, the result, 𝑃𝑎 for 𝑀 or 𝑃𝑎
′ for 𝑀’, is obtained for the 

common input data 𝑎 . If the classification result 𝑡  for 𝑃𝑎[𝑡]  is very likely and 𝑃𝑎
′[𝑡]  is less 

likely, then 𝑀 is said to memorize the datapoint 〈𝑎, 𝑡〉 used as one the training data. From this 

definition, we can see that the DNN model memorizes the training data in the overfitting 

situation, where 𝑃𝑎[𝑡] is apparently more likely than 𝑃′𝑎[𝑡]. 

For DNN models, it is known that the Membership Inference is possible. The problem is to 

find out if a datapoint 〈𝑥, 𝑦〉 (〈𝑥, 𝑦〉 ∈ 𝐷) was included in the training dataset (〈𝑥, 𝑦〉 ∈ 𝑆) just 

from the information obtained by feeding data to the trained model, 𝑀𝑆(𝑥). Black box methods 

make use of the classification probability vector 𝑃𝑥  [34], or white-box methods use the 

information of the loss function ℓ(𝑌(𝑊; 𝑥), 𝑦)  calculated in the process of executing 𝑀𝑆(𝑥) 

[35], where 𝑊 is the training parameter or weight and 𝑌(𝑊; 𝑥) is the internal representation 

of the prediction for the input 𝑥. 

Intuitively, Membership Inference method is based on the observation that the distribution 

of 𝑃𝑥 or ℓ(𝑌(𝑊; 𝑥), 𝑦) is different depending on whether the datapoint 〈𝑥, 𝑦〉 is included in 

the training dataset 𝑆 or not. Furthermore, these differences in the distributions are somehow 

attributed to the memorization of training data including overfitting cases [35]. Thus, the 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology 
2nd English edition  DigiARC-TR-2023-02 / CPSEC-TR-2023002 

28 

 

approach to mitigate the threats of Membership Inference is to remove those data, that are 

memorized easily, from the training dataset, in addition to employing a machine learning 

method that avoids overfitting [36].  

We now examine the situation involved with the memorization of training data. Consider a 

classification problem as in Figure 5.1; we assume 𝑎 ≠ 𝑏  whereas 𝑡 = 𝑢 . Figure 5.1 (a) 

illustrates a situation where the prediction probability of 〈𝑏, 𝑢〉 , a training data moved away 

from 〈𝑎, 𝑡〉, decreases as the distance between them becomes large. Figure 5.1 (b) shows that 

removing that datapoint 〈𝑎, 𝑡〉 from 𝑆 does not significantly affect the prediction probability 

of the data 〈𝑏, 𝑢〉 when the training data are dense in 𝑆. In other words, the removed training 

data is not memorized in that it does not significantly affect the prediction results. Figure 5.1 (c) 

represents a situation where the training data are sparse. Contrary to Figure 5.1 (b), it represents 

that the influence becomes large and is firmly remembered. Such outlier data significantly affects 

the predictive classification performance of the DNN model. 

Finally, we consider the Membership Inference viewed from the training data debugging 

problem. In the situation where training data are memorized, the distribution of either 𝑃𝑥 or 

ℓ(𝑌(𝑊; 𝑥), 𝑦) is very different depending on whether the datapoint is included in the training 

dataset 𝑆 or not. The Membership Inference method makes use of the fact that the predictive 

performance for 𝑧′, far from training 𝑧 datapoints, is poor. In other words, we can think of the 

Membership Inference as a test of model robustness; the phenomenon of training data 

memorization is related to model robustness. 

 

 
(a) Predicted probability in the neighborhood   (b) Dense region   (c) Sparse region 

Figure 5.1 Training data placement and prediction certainty. 

 

Here, we refer to the schematic situation in Figure 5.1. Removing the dense data shown in 

Figure 5.1 (b) would have little impact on the model accuracy. On the other hand, removing the 

data in a sparse region as shown in Figure 5.1 (c) would improve model robustness, but would 

reduce model accuracy in the neighborhood because there would no longer be data to support 

their predictive classification results. Alternatively, adding new data in the neighborhood 

without removing this datapoint will make the region dense and improve the local model 

accuracy. Therefore, detecting outliers in the training data set 𝑆  is important for debugging 

dataset. 

Figure 5.1 schematically illustrates that the predictive classification performance of the input 
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data is affected by the location relationship with the training data. However, it does not say how 

the location relationship is defined, i.e., from what aspects of the data, the location relationship 

is defined. Conversely, now the question is how the location relation should be defined when 

discussing the difference in prediction classification performance; the outlier detection problem 

will become clear when such criteria are precisely defined. 

5.3 Outliers and Neuron Coverage 

We consider outlier detection methods for the purpose of training data debugging. 

 Outliers in Training Data 

The debugging problem of training data is to find out outliers in the training dataset and to 

decide how to deal with the outliers according to the purpose of the DNN model under 

development. How we handle the outliers is related to the requirements specification of the DNN 

model. Thus, the general discussion of training data debugging may be limited within 

establishing a technique for outlier detection. 

In general, outliers are data that have different characteristics from the data that make up 

the majority, and whether or not they are outliers is defined based on the data distribution 

(statistical data model) that the collection of target data exhibits [37]. For example, if the 

probability density function of the data distribution is known, then we can check whether the 

data are outlier or not based on the likelihood of the data. 

In a naive way, we consider whether it is an outlier or not based on the empirical distribution 

of the training data. However, the training data is a multi-dimensional vector, and it is difficult to 

know the empirical distribution in a compact form. For example, it is difficult to apply methods 

such as Kernel Density Estimation, and as a result, the outlier detection method based on 

likelihood is not practical. Alternatively, analysis methods similar to Combination Testing, which 

is known in the field of software testing, may be applied. By selecting components (features) that 

are considered having a large impact on the empirical distribution and focusing on such 

representative dimensions, we may conduct analysis as an approximate of the case on the whole 

empirical distribution. While practically applicable, outliers are rare by definition, and the 

effectiveness of this approximate method is questionable. 

For a slight change of perspective, the robustness radius of the standard method of analyzing 

model robustness [38] is considered. For two datapoints 〈𝑥, 𝑦〉 and 〈𝑥′, 𝑦′〉 and the predictive 

classification results for each of the outputs 𝑃𝑥[𝑦] and 𝑃𝑥′[𝑦′], let the robust radius 𝛿 be the 

tolerance level 휀 of the difference between the outputs; for a given 휀, the robust radius is the 

maximum difference of input data that satisfies 𝛿 ( | 𝑃𝑥[𝑦] − 𝑃𝑥′[𝑦′] | ≤ 휀 when | 𝑥 − 𝑥′ |𝑝 ≤

𝛿 ). Here, we define the difference of input data in terms of 𝐿𝑝-norm. In a naive way, for a given 

휀 for given input data, we consider that the model robustness is good if the robustness radius 𝛿 

is large. However, the calculated radius 𝛿𝑝 is dependent on the choice of the norm 𝐿𝑝. While 
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the definition of model robustness by the robust radius is strict, the analysis in the space of input 

data requires further discussion or interpretation of whether the norm used is appropriate or 

not, which complicates the problem. 

We consider now how the training data 〈𝑎, 𝑡〉 affect the prediction results of the other data 

〈𝑏2, 𝑢2〉 that are classified to different classification categories (𝑡 ≠ 𝑢2) (see Figure 5.1 (a)). The 

two datapoints have different classification categories and can be assumed to be far apart in the 

input data space. We assume that the training dataset 𝑆 contains 〈𝑎, 𝑡〉 and let 𝑆’ be the one 

to be removed 〈𝑎, 𝑡〉 from 𝑆. Further, let the DNN models obtained from 𝑆 and 𝑆’ be 𝑀 and 

𝑀’  respectively, and let the predictive classification results for the data 〈𝑏2, 𝑢2〉  be 𝑃𝑏2  and 

𝑃𝑏2
′  . With the method of Influence Functions, which analyzes how 𝑆  and 𝑆’  affect the error 

function, we are able to know that there exists 〈𝑏2, 𝑢2〉 such that the values of 𝑃𝑏2[𝑢2] and 

𝑃𝑏2
′ [𝑢2] are different [39]. It shows that the presence or absence of the training datapoint 〈𝑎, 𝑡〉 

affects the classification probability of 〈𝑏2, 𝑢2〉. Therefore, it is difficult to obtain the desired 

information by analyzing the differences in the input data space (𝑎 ≠ 𝑏2) . 

From the above, we can see that it is difficult to systematically detect the desired outliers by 

analyzing a collection of training data in the input data space. The reason for this is that model 

accuracy and model robustness are affected not only by the training data but also by various 

factors involved in the training process, such as the machine learning method. However, we do 

not claim that the analysis in the input data space is completely ineffective. Such an analysis 

would give us a vague idea of the empirical distribution of the training data. 

In this chapter, we think that even if the features of the input data space are related to model 

accuracy and model robustness, they are not appropriate as a systematic training data 

debugging method. We will study systematic methods for detecting outliers in training data. 

 Active Neurons 

Neuron coverage is defined as the ratio of active neurons to the number of target neurons 

considered [40]. 𝑀𝑆(𝑥) denotes the situation where the input signal (of x) propagates through 

the DNN model and activates each neuron. When the output of a particular neuron exceeds a 

given threshold, we call it active, an active neuron. 

Neuron coverage was initially proposed as a coverage criterion for coverage-driven test data 

generation [40]. The active neurons for the input data 𝑥 provide a useful information in that 

they influence the output results. On the other hand, the neurons not involved in the predictive 

inference process, are considered to be inactive. The input data that produce inactive neurons 

do not effectively test all the neurons, and then new input test data are needed so that they 

further activate the inactive neurons. When a set of input data makes all the neurons active, the 

set of test data are considered to reach 100% of the coverage. 

After the original proposal in [40], there have been several research works to study the 

practical usefulness of the neuron coverage as a test coverage criterion [41][42][43]. In 

particular, it has been recognized that 100% of the neuron coverage is not difficult to achieve 

and thus is weak as a test coverage criterion, which is similar to the case of the C0 criterion in 
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conventional software testing methods. 

On the other hand, we may consider that the training was appropriate in the first place, 

producing inactive neurons not involved in the predictive inference process. In this case, we can 

add new input data to the training data and conduct re-training [40]. This suggests the idea of 

using the neuron coverage as a criterion for evaluating the quality of the model 𝑀𝑆 . The 

following is a discussion from the viewpoint of the neuron coverage as a model quality 

evaluation criterion [44]. 

In DNN models 𝑀𝑆  for classification tasks, the upstream layers near the input perform 

encoding 𝐸′  (Encoding), and is followed by classifying 𝐶′ . Classifying is done after the 

encoding (𝑀𝑆 = 𝐶′ ∘ 𝐸′); 𝑀𝑆(𝑥) = (𝐶′ ∘ 𝐸′)(𝑥) = 𝐶′(𝐸′(𝑥)). When the output is a classification 

probability vector, we place softmax functions in the final layer (logits) of the output; 𝑀𝑆 =

SOFTMAX ∘ 𝐶 ∘ 𝐸′. Next, we may place a layer of Fully Connected Network (FCN) between 𝐸’ 

and 𝐶; 𝑀𝑆 = SOFTMAX ∘ 𝐶 ∘ FCN ∘ 𝐸. 

In FCN, a neuron in a layer considered is connected to all the neurons in the next layer, thus 

the output is swap-invariant, which means that the output is preserved when the neurons are 

exchanged within the same layer. Therefore, the neuron coverage may be useful to summarize 

the neuron activity in FCN layers. On the other hand, when the constituent neurons play a 

specific functional role, such as in SOFTMAX or CNN, it is questionable whether the neuron 

coverage, which considers all neurons equally, provides useful information. In fact, two different 

definitions are studied for CNNs, and depending on which one is adopted, the value of neuron 

coverage is different [45]. In this chapter, we consider neuron coverage for the FCN layer. 

A series of experiments are conducted [45] in which training data are systematically 

generated by means of a classical data augmentation method and the effects on neuron coverage 

are investigated. The results showed that the difference in training data had influenced the 

neuron coverages at the 𝐸′ layer, while only a small effect was made on the 𝐶 layers. In addition, 

although the testing data are changed, very small differences are observed on the last layer in 𝐶 

(Penultimate Layer of the whole model). It implies that the differences in the training data are 

reflected in the FCN layer where 𝐸′ = FCN ∘ 𝐸 as introduced early. 

In addition, in previous experiments [32][44][46] in which we have measured the neuron 

coverage on the FCN located as the last layer of 𝐶, we observed little correlation between the 

classification prediction probability and neuronal coverage. Therefore, the neuron coverage may 

be considered to represent an aspect independent of the information contributing to the model 

accuracy. If it is found to be correlated with the model robustness, we can expect that the 

neuronal coverage on a particular layer is useful as a method to detect outliers for our purposes. 

5.4 Experiments and Discussions 

In our experiments, we used the machine learning model such that 𝑀𝑆 = SOFTMAX ∘ 𝐶 ∘

FCN ∘ 𝐸 , and the MNIST dataset. In particular, the training dataset 𝑆  was entered as the 

evaluation input, and the neuron coverage at the FCN layer was measured, whose results are 
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shown in Figure 5.2. 

Figure 5.2 (a) shows the frequency distribution of the neuron coverage for the input data 

(the result of KDE). Figure 5.2 (b) is a scatter plot of the neuron coverage of the input data on the 

horizontal axis and the prediction probability of the same input data plotted on the vertical axis. 

The red dots represent the data with correct predictions and the blue dots represent the 

incorrect one. The correct prediction rate of the training data and the test data were both 99%. 

 

 
(a) Neuron coverage vs data frequency    (b) Neuron coverage vs prediction probability 

Figure 5.2 Analysis results of training data 

 

Figure 5.2 (a) shows that the neuron coverage in the FCN layer is distributed between 0.38 

and 0.84, and the median and mean values are 0.60. In Figure 5.2 (b), we confirmed again that 

there is almost no correlation between the neuronal coverage and the predicted classification 

probability. While there is a large difference in neuron coverage (between 0.38 and 0.84) , it can 

be considered that the magnitude of the contribution to prediction classification differs 

regardless of whether the answer is correct or incorrect. In other words, the neuron coverage 

takes a large value even when the contribution to being incorrect may be large. 

In Figure 5.2, the area circled by the ellipse, for example, represents the training data with 

larger-than-average neuron coverage, resulting in a significant impact on the output, leading to 

the observed classification probabilities. Therefore, it can be considered to be a faithful 

representation of the characteristics (classification probabilities) of the target data. Suppose 

that we chose training data with smaller-than-average neuron coverage. According to Figure 5.2 

(b), the predicted classification probabilities of the outputs are scattered, which is similar to the 

case for the elliptical regions in Figure 5.2 (b), while it is not certain that the small neuron 

coverage had an appropriate impact on the output. In other words, those training data may be 

considered not to play significant roles to obtain 𝑀𝑆. In this chapter, we consider the training 

data that has small neuron coverage, regardless of the predicted classification probability, to be 

an outlier. 

We now sort the training data based on the neuron coverage and create training datasets 

𝑆(𝐾)  of the same size. Then, we use 𝑆(𝐾)  to derive a trained training model 𝑀(𝐾) , and  

evaluate 𝑀(𝐾) by means of a common dataset for the evaluation. In this experiment, the entire 
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sorted training data was studied, and no adjustments were made at the level of individual data. 

 

 
(a) Median output value vs. test data frequency  (b) Neuron vs. magnitude of displacement 

Figure 5.3 Neuron activity vector 

 

Figure 5.3 shows the results of the five trained models 𝑀(𝐾) (K = 1, …, 5), in the form of the 

neuron activity vectors of the FCN layer, where the test dataset was used for the evaluation. The 

neuron activity vector represents an internal feature, which is a multidimensional vector that 

consists of the output values of the constituent neurons. 

 The training datasets 𝑆(𝐾) (K = 1, …, 5) are those obtained by random selection, right-side 

editing (replacing the training data enclosed in the ellipse in the Figure 5.2), left-side editing, 

both-sides editing, random selection, and data augmentation after random selection. These 

correspond to the bar graph from left to right in Figure 5.3 (a). The accuracies are 97.14%, 

96.89%, 96.90%, 96.94%, and 95.81%; there is no significant difference except for the 𝑀(5). The 

fact that there is no difference from 𝑀(1) to 𝑀(4) is consistent with the way that the training 

data sorting method (see Figure 5.2 (b)). In addition, because data augmentation is applied to 

obtain 𝑆(5) and thus its distribution characteristics are somewhat different from those of the 

test dataset used. 

Figure 5.3 (a) shows bar graphs, and each bar represents the number of test data for which 

the median of the vector components is within the range of values on the horizontal axis. It 

represents that most of the test data have a small median value and thus a small contribution to 

the predictive classification result. In addition, the data distribution in the 𝑆(𝐾) differs, where 

𝑆(1) can be considered to follow the distribution of the original training dataset 𝐷 because it is 

randomly selected. In Figure 5.3 (b), we consider this 𝑆(1)  as a reference, and for each 

component of the neuron activity vector, we show the difference between the case of 𝑆(1) and 

the others. As the difference is large, the effect by the deviation from the 𝑆(1) distribution (and 

thus the original 𝐷) is large. In other words, it suggests that the effect of training data editing is 

large. 

 From the above, it can be said that the training data could be re-arranged and crafted, based 

on the neuron coverage, in such a way that the effect on the model accuracy is minute while the 

discrepancy of the neuron activity vector is apparent (Figure 5.3 (b)). For example, 𝑆(3) is the 

result of left-side editing, in which the training data with small neuron coverage were removed. 

Qualitatively, Figure 5.3 implies that 𝑆(3) is considered to have contributed to the removal of 
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outliers. In order to discuss further quantitatively, it is necessary to establish an empirical test 

method standardized, a kind of test-time augmentation method, for the model robustness. 

5.5 Conclusion 

In FY2021, we studied debugging and testing methods of training data for the case where 

bias in training data is the root cause of defects. Here, defects are judged from two quality 

characteristics, the model accuracy and model robustness. In general, it is necessary to debug 

training data considering that these two characteristics have a trade-off relationship. In the study, 

the main points of the training data debugging method are studied in view of the notions 

obtained for the membership inference, which has been discussed in the context of privacy 

quality characteristics, and attributed to the problem of outlier detection. However, how to 

define outliers is non-trivial. We proposed a method to estimate outliers in training data by 

computing the neuron coverage from the activated states inside the model and extracting the 

outliers from the bias in the distribution of the neuron coverage values. Experiments showed 

that the proposed method might provide a piece of information to aid debugging of training data. 

In the future, we will establish a method to detect outliers for the purpose of training data 

debugging through refining the experiment methodology presented here and conducting 

experiments systematically. Furthermore, we will study methods to conduct debugging from the 

viewpoints of both model accuracy and model robustness. 
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6 Evaluation and Improvement of Robustness 

In this chapter, robustness means the ability that a machine-learned model keeps correct 

output even when noise is added to input (including adversarial examples). For example, it 

evaluates how much noise can be added to the model without changing the correct results. One 

of the measures of its robustness is the maximum safe radius (MSR). In this chapter, we explain 

adversarial example and the maximum safe radius in a classifier based on a feedforward neural 

network, and then report the results of a survey on techniques for estimating and increasing the 

maximum safe radius. 

6.1 Robustness measure (maximum safe radius) 

It is well known that machine-learned models on inference programs mis-classify input data 

even when very small perturbations are added. Such perturbated data are called adversarial 

examples [47], and adversarial examples have been actively researched in recent years. The set 

𝐴𝑑𝑣𝛿(𝑥)  of all adversarial examples contained in the 𝛿 -neighborhood (inside the sphere of 

radius 𝛿 ∈ ℝ, where ℝ is the set of real numbers) of the input data sample 𝑥 ∈ ℝ𝑛 is defined 

as follows: 

𝐴𝑑𝑣𝛿(𝑥) = {𝑥′ | ‖ 𝑥 − 𝑥′‖ ≤ 𝛿   ⋀   𝑓(𝑥) ≠ 𝑓(𝑥′)}, 

where 𝑓(𝑥) is a function representing the machine-learned model that takes the input sample 

𝑥 and return the classification, and ‖𝑥 − 𝑥′‖ is the distance between two data samples 𝑥 and 

𝑥′. The 𝑝-norm is often used to define the distance. 

 

 

Figure 6.1 An adversarial example from an image of a panda, which is mis-classified into a gibbon 

 

Adversarial examples are explained by Figure 6.1. The left side in Figure 6.1 shows the input 

space to the neural network and the right side shows the output space from the neural network. 

The center of the red sphere in the input space represents an original input image of a panda, 

and the inside of the sphere, whose radius is 𝛿 , (i.e., 𝛿 -neighborhood of the original image) 
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represents the set of perturbated images obtained from the original image by adding noises 

whose sizes are less than 𝛿. The set of outputs from the neural network for all the input images 

in the 𝛿-neighborhood corresponds to the red region in the output space on the right. Here, a 

part (lower-right) of the red region in the output side is beyond the decision boundary and is 

mapped into the region of gibbons. It means misclassification, and the input images mapped to 

the lower-right part are adversarial examples. 

If there is no adversarial example in the 𝛿-neighborhood of the input data 𝑥 (i.e., inside the 

sphere whose radius is 𝛿 and center is 𝑥), then 𝛿 is said to be the safe radius of 𝑥. Then, the 

maximum safe radius of 𝑥, denoted by 𝑀𝑆𝑅(𝑥), is defined as follows: 

𝑀𝑆𝑅(𝑥) =  max {𝛿 | 𝐴𝑑𝑣𝛿(𝑥) = ∅}. 

When the maximum safe radius of 𝑥 is large, it is difficult to generate adversarial examples. 

Therefore, the maximum safe radius can be used as a measure of the robustness to input 

perturbations, including adversarial examples, of machine-learned models.  

The radius 𝛿 in Figure 6.1 is not a safe radius because some perturbated input images inside 

the 𝛿 -neighborhood are misclassified into gibbons. On the other hand, 𝛿  in the following 

Figure 6.2 is the maximum safe radius because all the input images inside the 𝛿-neighborhood 

in Figure 6.2 are correctly classified. 

 

 

Figure 6.2 The maximum safe radius 𝛿 

6.2 A survey on methods for evaluation and improvement of robustness 

Table 6.1 shows recent research papers on methods for evaluation and improvement of 

robustness, where each small box in the table represents a research paper with reference and 

the information on neural networks used in the experiments for evaluating the methods 

proposed in the paper. The information is useful for comparing applicable scales of the methods. 

Table 6.1 is categorized by the following perspectives: 

  



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology 
2nd English edition  DigiARC-TR-2023-02 / CPSEC-TR-2023002 

37 

 

Table 6.1 Methods for evaluation and improvement of robustness (MSR: Maximum Safe Radius) 

  Evaluation of robustness Improvement of robustness 

C
ertified

 

R
igo

ro
u
s

 

 

Rigorous estimation of MSR 

Katz et al. 2017 (Reluplex) [48] 

ACAS-XU-DNN, 300 ReLU nodes 

6 hidden layers, 

(Limitation: hundreds of nodes) 

 

  

Tjeng et al. 2019 [49] 

CIFAR-10, ResNet, 9-CNN, 2-layer, 

107,496 ReLU units, 

100~1,000 times faster than Reluplex 

 

A
p
p
ro
xim

ative
 

D
eterm

in
istic

 

Estimation of a lower bound (LB) of MSR 

Weng et al. 2018 (Fast-Lin) [50] 

CIFAR, 6-layer, 12,288 ReLU units 

About 10,000 times faster than Reluplex 

 

Boopathy et al. 2019 (CNN-Cert)[51]  

CIFAR-10 (32x32x3), 5-layer, 

10 filters, 29,360 hidden nodes, 

Faster than Fast-Lin 

  

Training by detecting all the adversarial exes 

Wong and Kolter 2018 [55] 

SVHN (32x32x3), 2-conv, 32-ch, 

100, 10 hidden units, ReLU, 

(Non-applicable to ImageNet) 

 

 

 

P
ro
b
ab
ilistic

 

Estimation of a probabilistic LB of MSR 

Weng et al. 2019 (PROVEN) [52] 

CIFAR, 5-layer, CNN, ReLU 

almost same as CNN-Cert 

  

Randomized smoothing after training 

Lecuyer at el. 2019 [56] 

ImageNet (299x299x3), 

Inception-v3 + auto-encoder 

 

Cohen at el. 2019 [57] 

ImageNet (299x299x3),  

ResNet-50 (50-layer) 

Tighter certification than Lecuyer [56] 

  

U
n
certified

 

 

Estimation of an upper bound (UB) of MSR 

Carlini and Wagner 2017 [53] 

ImageNet (299x299x3), 

Inception-v3 

 

Estimation of an approximation of MSR 

Weng et al. 2018 (CLEVER) [54] 

ImageNet (299x299x3),  

ResNet-50 (50-layer) 

  

Training by detecting near adversarial exes 

Madry et al. 2018 [58] 

CIFAR (32x32x3),  

28-10 wide ResNet 
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– Columns in Table 6.1 (application): 

➢ Evaluation of robustness by estimating MSR 

➢ Improvement of robustness by increasing data samples with a specified MSR 

– Row in Table 6.1 (certification and strictness): 

➢ Certification of no existence of adversarial examples in 𝛿-neighborhood 

 Rigorous estimation of MSR 

 Approximative estimation of MSR 

⚫ Deterministic (no adversarial example exist) 

⚫ Probabilistic (the probability of no adversarial example is 𝜌%) 

➢ No certification of no existence of adversarial examples in 𝛿-neighborhood 

The methods in Table 6.1 are explained in the following Subsections 6.2.1~6.2.7. 

 Certified and rigorous evaluation of robustness 

Katz et al. [48] proposed a method, Reluplex, to verify that a machine-learned model satisfies 

given properties. A demonstration tool that implements the method Reluplex has also been 

released. Properties are constraints on input-output relations of machine-learned models, and 

Reluplex can exhaustively and rigorously (soundly and completely) verify that there is no 

adversarial example in the 𝛿-neighborhood of the input data sample. Therefore, the maximum 

safe radius (MSR) can be estimated by checking the existence of adversarial examples by 

changing the radius 𝛿  with binary search. Reluplex is an extended Simplex method (one of 

solvers for linear programming problems) with rules for the ReLU function and it is implemented 

by a satisfiability-checking tool (SMT-Solver) with a module for the theory of real numbers. 

Reluplex is a powerful tool to verify properties in addition to robustness, but the computational 

cost is expensive and the number of neurons it can verify is a few hundred ReLUs at most. 

Tjeng et al. [49] proposed an efficient method for estimating maximum safe radii. Then, they 

implemented the method on a mixed integer linear programming (MILP) solver and 

demonstrated that the tool can exactly estimate the maximum safe radii of a neural network with 

100,000 ReLU-type neurons. Although it is still difficult to apply the rigorous solver-based tools 

to practical large-scale machine-learned models, the scalability is being improved. 

 Certified, approximative, and deterministic evaluation of robustness 

Weng et al. [50] proposed a method, Fast-Lin, to approximate the maximum safe radii of 

ReLU-type neural network. Fast-Lin linearly approximates the output region with a polytope and 

estimates an approximation δ that is slightly smaller than the maximum safe radius, as shown in 

Figure 6.3. It is guaranteed that there is no adversarial example inside the 𝛿 -neighborhood 

because the approximation δ does not exceed the maximum safe radius (i.e. sound). It means δ 

is a safe radius and is a lower bound of the maximum safe radius (𝛿 ≤  𝑀𝑆𝑅(𝑥)). It was reported 

that Fast-Lin is 10,000 times faster than the rigorous method Reluplex by approximative convex 
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outer polytopes.  

 

 

Figure 6.3 An approximation 𝛿 that is slightly smaller than the maximum safe radius (MSR) 

 

Boopathy et al. proposed CNN-Cert, which is an improved version of Fast-Lin [51]. CNN-Cert 

also supports convolutional networks including not only the activation function ReLU but also 

sigmoid, tanh, and arctan, and it improves approximation accuracy and is faster than Fast-Lin. 

 Certified, approximative, and probabilistic evaluation of robustness 

Weng et al. [52] proposed a method, PROVEN, to approximate probabilistic maximum safety 

radii. As shown in Figure 6.4, the probabilistic maximum safe radius 𝛿  with a probability 𝜌 

means that there is no adversarial example inside the 𝛿-neighborhood with a probability 𝜌. In 

other words, it permits the existence of adversarial examples with the probability (1 − 𝜌) . 

PROVEN has been developed based on CNN-Cert, and the computational complexity has not 

significantly increased from CNN-Cert. 

 

 

Figure 6.4 An approximation 𝛿 that is slightly smaller than the probabilistic MSR with 𝜌 
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 Uncertified evaluation of robustness 

Carlini and Wagner [53] proposed a method to detect the (almost) closest adversarial 

example to the input data sample 𝑥  and estimate the distance 𝛿  as an approximative 

maximum safety radius by using an existing optimization tool (Adam). However, it is not 

guaranteed that the distance 𝛿  estimated by the method is the shortest distance to the 

adversarial example, and there is a possibility that there are adversarial examples closer than 

the distance. In other words, it is an upper bound of the maximum safe radius (𝑀𝑆𝑅(𝑥) ≤ 𝛿). 

Although it is not guaranteed that the distance δ estimated by the method is a safe radius, it is 

often used for evaluation in recent papers on robustness as a measure of the maximum safe 

radius. 

Weng et al. [54] proposed the method CLEVER to estimate an approximate maximum safe 

radius as an evaluation measure of robustness independent of attack methods. It was reported 

that the method could be applied to relatively large neural networks and the image recognition 

model Inception-v3 was evaluated in about 10 seconds. The method estimates an approximative 

maximum safe radius based on the maximum effect in output caused by small changes in input, 

where the maximum effect is approximated by the extreme value theory. As shown in Figure 6.5, 

the estimated value 𝛿  can be larger than the maximum safe radius, and thus there is a 

possibility that adversarial examples exist inside the 𝛿-neighborhood (i.e., it is not guaranteed 

that 𝛿 is the safe radius). 

 

 

Figure 6.5 An approximation of the maximum safe radius (uncertified) 

 Certified, approximative, and deterministic improvement of robustness 

Wong et al. [55] proposed a method (robust training) to train such that the maximum safe 

radius of each data in the training dataset to be a specified value 𝛿. Although this method does 

not guarantee that the maximum safe radius δ is obtained for every training data sample after 

training, it also gives a method to estimate an approximative value (a safe radius) of the 

maximum safe radius for each input data sample. In the robust training, neural networks try to 

learn such that they correctly make inferences for not only training data samples but also the 𝛿-

neighborhood of every sample. 
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A sketch of the robust training is shown in Figure 6.6, where the black dotted line in the 

output space represents the decision boundary learned by a normal training, and the red solid 

line represents the decision boundary learned by the robust training. The six training data 

samples in the input space are correctly classified by both the boundaries, but some data in the 

𝛿-neighborhood of each sample are misclassified by the dotted boundary (normal training). On 

the other hand, data in the 𝛿 -neighborhood of each sample are also learned in the robust 

training as shown in the red boundary. The robust training can guarantee some safe radii, but it 

is difficult to apply the training to practical large scale neural networks due to the low scalability.  

Wong et al. [55] reports that the robust training was successfully applied to the datasets of 

images, MNIST (28 × 28) and SVHN (32 × 32) but was not applicable to ImageNet (256 × 256). 

 

 

Figure 6.6 Robust-trining by input data with 𝛿-neighberhood 

 Certified, approximative, and probabilistic improvement of robustness 

Lecuyer et al. [56] proposed a method to estimate maximum safe radii that can be 

probabilistically guaranteed by randomized smoothing. In the randomized smoothing, the 

inference for the same input is repeated in a neural network where a noise layer is added after 

training, and the final output is the average of the outputs obtained by the repeated inferences. 

A sketch of the randomized smoothing is shown in Figure 6.7, where the black dotted line in 

the output space represents the decision boundary without randomized smoothing, and the red 

solid line represents the decision boundary with randomized smoothing. The randomized 

smoothing of Lecuyer et al. [56] improves robustness by smoothing decision boundaries with 

certification of safe radii and has been successfully applied to guarantee the robustness of 

machine learned models for large-scale input data such as ImageNet (299 × 299 × 3). When the 

variance of the added noise is increased, the guaranteed safe radius also increases, but on the 

other hand, the correctness (e.g., accuracy) decreases. Lecuyer et al. [56] applied the technique 

of differential privacy, where the output for two similar inputs is made statistically 

indistinguishable, to clarify the relations between certifiable approximative probabilistic 

maximum safe radii, the standard deviation of noise, the number of inferences, and so on. 

Cohen et al. [57] proposed a randomized smoothing based method that can estimate tighter 

certifiable approximative probabilistic maximum safe radii than one of Lecuyer et al. [56]. 
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Although randomized smoothing needs repeated inferences (tens or hundreds of times 

experimentally) for an input, it can probabilistically guarantee robustness even for large-scale 

networks.   

 

 

Figure 6.7 Improvement of robustness by randamized smoothing 

 Uncertified improvement of robustness 

Madry et al. [58] proposed a method (adversarial training) to train such that maximum safe 

radius of each data in the training dataset to be a specified value 𝛿. In the adversarial training, 

samples to be potentially adversarial examples in 𝛿-neighborhood are detected during training 

and are also used as training data. Compared to the robust training of Wong et al. [55], the 

adversarial training cannot guarantee robustness, but it is more applicable to larger networks. 

In addition, compared to randomized smoothing, the adversarial training does not require 

repeated inferences.  

6.3 Conclusion 

In general, improvement of robustness tends to decrease accuracy, and currently accuracy is 

often more important. However, if robustness is not considered, accuracy may rapidly decrease 

even by small input perturbations. Therefore, robustness is important in critical systems. The 

methods related to the maximum safe radius, which is a measure of robustness, explained in this 

chapter have been proposed recently, and environments for applying such methods have not 

been established well yet. Since such methods have been experimentally applied also to practical 

machine learned models, we think that the maximum safe radius can be one of measures of 

robustness in a few years. 
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7 Generalization Bounds of Machine-Learned Models 

In this chapter, we briefly introduce well-known theorems on generalization bounds, that are 

the expected values of the error rates of machine-learned models for all input data, and we show 

some computational results obtained by applying the theorems. We are aiming at guaranteeing 

the behavior of machine-learned models even for unseen input data. 

7.1 Generalization bounds 

In this chapter, we model machine-learned neural networks as shown in Figure 7.1, with the 

input-output relations. In particular, we focus on feed-forward neural networks trained as 

classifiers by supervised deep learning and denote the input-output relation as a function 𝑦 =

𝑓𝑤(𝑥), where 𝑥 and 𝑦 are an input and the correct output, respectively, and 𝑤 is the weights 

(training parameters) on connections between neurons in the neural network. In the field of 

statistical learning theory, the function 𝑓𝑤 is often called a hypothesis, but it is called a machine-

learned model in this chapter, as in the other chapters. Since a neural network can express 

multiple machine-learned models 𝑓𝑤  by adjusting weights 𝑤 ∈ 𝒲 , the set of expressible 

machine-learned models 𝑓𝑤 in the network is denoted by ℱ. Hence, Machine learning means to 

select a machine-learned model 𝑓𝑤  from ℱ  by a training algorithm such that 𝑓𝑤  fits the 

training dataset. The model 𝑓𝑤 can be denoted by 𝑓 when the parameter 𝑤 is not important. 

 

 

Figure 7.1 Generalization error and empirical error 

 

The generalization error 𝐿(𝑓𝑤)  of the machine-learned model 𝑓𝑤  (a classifier) is the 

expected value of the error rate of 𝑓𝑤 for every pair (𝑥, 𝑦), of an input 𝑥 and the correct output 

𝑦, randomly selected according to the distribution 𝒟, and is defined as follows: 
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𝐿(𝑓𝑤) = 𝔼(𝑥,𝑦)~𝒟[𝕀(𝑦 ≠ 𝑓𝑤(𝑥))], 

where 𝕀(𝑏)  is the following indicator function, that returns 0  if 𝑏  is true and returns 1 

otherwise, and therefore 𝕀(𝑦 ≠ 𝑓𝑤(𝑥)) is the 0-1 loss function: 

𝕀(𝑏)  =  if (𝑏 = true) then 1 else 0. 

For example, at the top left in Figure 7.1, the input space, that is drawn in 2 dimensions for 

simplicity but exactly has 784 dimensions, means “the distribution 𝒟 of images (28 × 28 =

784 pixels with 256 grayscale) looking like numbers.” In this case, the generalization error is 

the expected value of the error rate of 𝑓𝑤 for every image looking like numbers. Here, note that 

it is not the error rate for all the (256784) images in the input space. 

The empirical error �̂�𝑆(𝑓𝑤) of the machine-learned model 𝑓𝑤 is the error rate of 𝑓𝑤 for 𝑚 

input data samples in the dataset 𝑆~ 𝒟𝑚 selected according to distribution 𝒟: 

�̂�𝑆(𝑓𝑤) =
1

𝑚
∑ [𝕀(𝑦 ≠ 𝑓𝑤(𝑥))]

(𝑥,𝑦)∈𝑆

. 

Especially, if 𝑆 is the training dataset, then �̂�𝑆(𝑓𝑤) is also called the training error, and if 𝑇 is 

the testing dataset, then �̂�𝑇(𝑓𝑤) is also called the testing error. 

7.2 The theory of generalization bounds 

Even though it is almost impossible to exactly compute generalization errors because there 

are innumerable data in input-spaces, various theorems on generalization bounds, that are 

(upper) bounds of generalization errors, have been proposed for guaranteeing that “the 

generalization error of a machine-learned model is less than a generalization bound with 

probability at least 𝑝% ,” where p is the confidence of the bound. In this section, we briefly 

classify the theorems on the generalization bounds in Subsection 7.2.1, and then we explain the 

theorems in Subsections 7.2.2~7.2.5. 

 A classification of generalization bounds 

In this subsection, according to the classification of the generalization bounds as shown in 

Figure 7.2, we briefly explain the feasibility for applying generalization bounds to the evaluation 

of generalization performance of machine-learned models. In Figure 7.2, it seems difficult to 

apply the VC bounds or the Rademacher bounds for evaluating the generalization performance 

of (trained) machine-learned models because they give upper bounds of the worst model in the 

set ℱ of expressible machine-learned models in a given neural network. The PAC-Bayes bounds 

are effective for comparing the generalization performance of two or more machine-learned 

models [59][60] even though the absolute values of the bounds often are vacuous (close to or 

more than 100%). The Chernoff bounds can give upper bounds very close to the generalization 

errors by providing a large amount of testing data separately from the training dataset. 
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Figure 7.2 A Classification of generalization bounds and well-known examples of bounds 

 

In most cases, generalization bounds based on training errors (i.e., training datasets) is larger 

than generalization bounds based on testing errors (i.e., testing datasets). This tendency is also 

seen not only for the PAC-Bayes bounds but also for the others such as bounds based on output 

margins [61], bounds based on the stability of the training algorithm [62], and so on. 

The advantage of generalization bounds based on training errors is that they can be applied 

to the study of training (algorithms) for reducing generalization errors. The other advantage is 

that they can be computed only by training datasets without additional datasets such as testing 

datasets. For example, when the number of data samples is very small (e.g., a few dozen), it was 

reported that the PAC-Bayes bounds, where all samples were used for training, were able to be 

lower than the Chernoff bounds, where the samples were separated for training and testing [63]. 

Recently, several methods have been proposed for computing non-vacuous generalization 

bounds (less than 100%) even based on training errors. For example, such methods use 

distributions of machine-learned models (i.e., input-output functions instead of weights) in the 

PAC-Bayes bounds [64], or random labelled data in training [65], or model compression [66]. 

Furthermore, methods have also been proposed to optimize the distribution (the mean and the 

standard deviation) of each weight to reduce generalization errors using the PAC-Bayes bounds 

as objective functions [67][68]. In the near future, it is expected that generalization bounds 

based on training errors will also be effective as a measure of the generalization performance of 

machine-learned models, but currently, we consider that it is more realistic to adopt 

generalization bounds based on testing errors. 

 VC bounds 

The VC dimension 𝑉𝐶(ℱ)  is a complexity measure of the set ℱ  of expressible machine-

learned models and it means the maximum number of data that can be divided by ℱ [69]. Then, 

by using the VC dimension 𝑉𝐶(ℱ), the theorem, VC bounds [59], guarantees that the following 

inequality holds with probability (1 − 𝛿) at least, for any training data set 𝑆~𝒟𝑚 (size: 𝑚) 

and for any machine-learned model 𝑓 ∈ ℱ: 

Generalization

bounds

e.g., VC bounds

e.g., Rademacher bounds

e.g., Chernoff bounds

e.g., PAC-Bayes bounds

Based on 

testing errors

Dependent on 

training algorithms

Based on 

training errors

Independent of 

training algorithms

Independent of

training datasets

Dependent on

training datasets



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology 
2nd English edition  DigiARC-TR-2023-02 / CPSEC-TR-2023002 

46 

 

𝐿(𝑓) ≤ �̂�𝑆(𝑓) + 144√
𝑉𝐶(ℱ)

𝑚
+

√ln
1
𝛿

𝑚
, 

where 𝛿 ∈ (0,1) represents the uncertainty of the inequality. 

Most of computation results of VC-bounds exceed 100% because the bounds consider the 

worst case such that any model is selected from the set ℱ for any training dataset when the set 

ℱ  of expressible machine-learned models (i.e., architecture of a neural network) is given, in 

other words, the bounds are independent of training dataset and training algorithm. Therefore, 

it is not appropriate to use it to evaluate the generalization performance of trained machine-

learned models. 

 Rademacher bounds 

The Rademacher complexity is the complexity 𝑅(𝑆, ℋ) of the set ℱ of expressible machine 

learned models for the dataset 𝑆  [69]. Then, by using the complexity 𝑅(𝑆, ℋ) , the theorem, 

Rademacher bounds [59], guarantees that the following inequality holds with probability (1 −

𝛿) at least, for any training data set 𝑆~𝒟𝑚 (size: 𝑚) and for any machine-learned model 𝑓 ∈

ℱ: 

𝐿(𝑓) ≤ �̂�𝑆(𝑓) + 2𝑅(𝑆, ℱ) + 4𝑐
√2 ln

4
𝛿

𝑚
, 

where 𝑐 is a constant.  

The Rademacher bounds are lower than the VC bounds because the training dataset 𝑆 is 

considered, but the most of bounds also exceed 100% because the bounds are still independent 

of training algorithm. Therefore, it is not appropriate to use the Rademacher bounds to evaluate 

the generalization performance of trained machine-learned models by the same reason as the 

VC bounds. 

 PAC-Bayes bounds 

PAC (Probably Approximately Correct) represents that a machine-learned model 𝑓𝑤 trained 

by a training dataset is an approximation of the correct model and the generalization error gap 

is less than a threshold with a probability. PAC-Bayes considers the expected value 𝔼𝑤~𝑄[𝐿(𝑓𝑤)] 

of the generalization error of the probabilistic machine-learned model 𝑓𝑤  whose weights 𝑤 

are randomly selected according to the probability-distribution 𝑄 instead of fixed values. 

Although several theorems on the PAC-Bayes bounds have been proved, two well-known 

theorems (Catoni bounds and Maurer bounds) are introduced in this subsection. The theorem, 

Catoni bounds [70], guarantees that the following inequality holds with probability (1 − 𝛿) at 

least, for any posterior distribution 𝑄  and for any 𝛽, 𝛿 > 0 , when a training dataset 𝑆~𝒟𝑚 

(size: 𝑚) and a prior distribution 𝑃 whose weights independent of 𝑆 are given: 
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𝔼𝑤~𝑄[𝐿(𝑓𝑤)] ≤
1

1 − exp(−𝛽)
(1 − exp (−𝛽𝔼𝑤~𝑄[�̂�𝑆(𝑓𝑤)] −

1

𝑚
(KL(𝑄 ∥ 𝑃) + ln

1

𝛿
))). 

The theorem, Maurer bound [71], guarantees that the following inequality holds with probability 

(1 − 𝛿) at least, if 𝑚 ≥ 8: 

𝔼𝑤~𝑄[𝐿(𝑓𝑤)] ≤ 𝑘𝑙−1 (𝔼𝑤~𝑄[�̂�𝑆(𝑓𝑤)],   
1

𝑚
(𝐾𝐿(𝑄 ∥ 𝑃) + ln (

2√𝑚

𝛿
))), 

where 𝐾𝐿(𝑄 ∥ 𝑃) is the KL-divergence (Kullback-Leibler divergence) that shows the difference 

between the two distributions 𝑄 and 𝑃, and it is defined as follows: 

𝐾𝐿(𝑄 ∥ 𝑃) = ∫ 𝑄(𝑤) ln (
𝑄(𝑤)

𝑃(𝑤)
) 𝑑𝑤

𝒲

, 

and 𝑘𝑙−1(𝑞, 𝑏) is the binary KL-inversion defined by 

𝑘𝑙−1(𝑞, 𝑏) = sup{ 𝑝 ∈ [𝑥, 1] ∶ 𝑘𝑙(𝑞 ∥ 𝑝) ≤ 𝑏 }, 

where 𝑘𝑙(𝑞 ∥ 𝑝) is the binary KL-divergence (the KL-divergence of the Bernoulli distributions 

of 𝑞 and 𝑝) defined as follows: 

𝑘𝑙(𝑞 ∥ 𝑝) = ∑ 𝑞𝑘(1 − 𝑞)1−𝑘 ln (
𝑞𝑘(1 − 𝑞)1−𝑘

𝑝𝑘(1 − 𝑝)1−𝑘
) 

𝑘∈{0,1}

= 𝑞 ln (
𝑞

 𝑝 
) + (1 − 𝑞) ln (

1 − 𝑞

 1 − 𝑝 
). 

As shown in the Catoni bounds and the Maurer bounds, the PAC-Bayes bounds contain the 

posterior distribution 𝑄  of the trained machine-learned model (i.e., they depend on the 

training algorithms). Compared with the VC bounds and the Rademacher bounds, the PAC-Bayes 

bounds can give generalization bounds closer to the generalization errors, but the computation 

results of the PAC-Bayes bounds are often close to 100% (i.e., vacuous). 

 Chernoff bounds 

There are generalization bounds based on testing errors for the dataset 𝑇~𝒟𝑚 (size: 𝑚) 

that is not used in training (i.e., held-out dataset prepared for evaluation). For example, the 

theorem, Chernoff bounds [72], guarantees that the following inequality holds with probability 

(1 − 𝛿) at least: 

 𝐿(𝑓𝑤) ≤ 𝑘𝑙−1 (�̂�𝑇(𝑓𝑤),   
1

 𝑚 
ln (

1

 𝛿 
) ), 

where 𝑘𝑙−1(𝑞, 𝑏) is the binary KL-inversion explained in Subsection 7.2.4. Here, note that the 

testing error �̂�𝑇(𝑓𝑤) is used for expressing the upper bounds. The Chernoff bounds can give tight 

generalization bounds (i.e., close to the generalization errors) when sufficient testing dataset are 

prepared. 
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7.3 Computational examples of generalization bounds 

In this section, we report some computational examples of generalization bounds based on 

the theorems introduced in Section 7.2. At first, in Subsection 7.3.1, it is explained how to 

compute generalization bounds. Next, in Subsection 7.3.2, the computation results are shown. 

 Computation of generalization bounds 

As introduced in Subsection 7.2.5, the Chernoff bounds are useful for evaluating the 

generalization performance of trained machine-learned models because they can give tight 

generalization bounds, thus close to the generalization errors, and therefore the bounds are 

meaningful as absolute values. On the other hand, it has also been reported [59][60] that the 

generalization bounds, called perturbation bounds, of machine-learned models whose weights 

are perturbated, for example, by the Gaussian noise as shown in Figure 7.3, are useful as 

generalization measures for relatively comparing the generalization performance of machine-

learned models. In this section, the standard deviation 𝜎𝑖   of the Gaussian noise 𝒩(0, 𝜎𝑖
2) 

added to each weight 𝑤𝑖 is decided to be proportional to the magnitude of 𝑤𝑖 such that 𝜎𝑖 =

𝑟|𝑤𝑖|, where 𝑟 is a positive constant, called SD-rate. Such addition of noise is called magnitude-

aware perturbation [59]. 

 

Figure 7.3 A machine-learned model whose weights are perturbated by the Gaussian noise 

 

The theorems on the PAC-Bayes bounds can be applied for computing such generalization 

bounds of machine-learned models with probability distribution of perturbated weights. In this 

section, we use the posterior distribution 𝑄  equal to the prior distribution 𝑃  trained by a 

training dataset 𝑆 in the PAC-Bayes bounds (i.e., 𝑄 = 𝑃). As explained in Subsection 7.2.4, the 

posterior distribution 𝑄 can depend on the dataset used for computing generalization bounds, 

while the prior distribution 𝑃  cannot depend on it. Hence, we compute the generalization 

bound by using a testing dataset 𝑇, separated from 𝑆, in this case of 𝑄 = 𝑃. The advantage of 

𝑄 = 𝑃 is that the KL-divergence 𝐾𝐿(𝑄 ∥ 𝑃) is zero. In general, one of the reasons why the PAC-

Bayes bounds are close to 100% is that the KL-divergences are large. In this section, we apply 

the PAC-Bayes bounds in the case of 𝑄 = 𝑃 to the computation of generalization bounds based 
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on testing errors (i.e., by using testing datasets). 

In order to apply the PAC-Bayes bounds, it is necessary to compute the expected value 

𝔼𝑢~𝒩(0,𝑟2)𝜔[�̂�𝑇(𝑓𝑤⨁𝑢)]  of the testing error of the machine learned model 𝑓𝑤  with noise 𝑢 , 

where 𝜔 is the total number of weights (training parameters), 𝑟 is the rate of noise to weight 

magnitude (i.e., SD-rate), and 𝑤⨁𝑢  represents that the noise 𝑢  is added to weights 𝑤 

proportionally to the magnitude of each weight element (i.e., for each element 𝑖 ∈ {1, … , 𝜔} , 

(𝑤⨁𝑢)𝑖 = 𝑤𝑖 + 𝑢𝑖|𝑤𝑖| ). However, since it is difficult to exactly compute the expected value, we 

compute the upper bound of the expected value from the average of testing errors computed 

with noise in 𝑛 times. The upper bound �̅�𝑇,𝑈,𝛿′(𝑓𝑤) can be defined as follows, for the set 𝑈 =

{𝑢𝑖  | 𝑖 ∈ {1, … , 𝑛}} of randomly sampled 𝑛 Gaussian noises 𝑢𝑖  ~ 𝒩(0, 𝑟2)𝜔: 

 �̅�𝑇,𝑈,𝛿′(𝑓𝑤) = 𝑘𝑙−1 (
1

 |𝑈| 
∑ �̂�𝑇(𝑓𝑤⨁𝑢)

𝑢∈𝑈

,   
1

 |𝑈| 
ln

2

𝛿′
), 

where 𝛿′ is the uncertainty for using the average of testing errors instead of the expected value. 

Indeed, the following inequality holds with probability (1 − 𝛿′) at least (e.g. see Section 6 in 

[68]): 

𝔼𝑢~𝒩(0,𝑟2)𝜔[�̂�𝑇(𝑓𝑤⨁𝑢)] ≤ �̅�𝑇,𝑈,𝛿′(𝑓𝑤). 

Consequently, in this section, we use the following three expressions for computing 

generalization bounds using a testing dataset 𝑇 (size: 𝑚),  

(1)  Chernoff bounds:  𝑘𝑙−1 (�̂�𝑇(𝑓𝑤),   
1

 𝑚 
ln (

1

 𝛿 
) ) , 

 

(2)  Catoni bounds:  
1

1 − exp(−𝛽)
(1 − exp (−𝛽 �̅�𝑇,𝑈,𝛿′(𝑓𝑤) −

1

 𝑚 
ln (

1

 𝛿 − 𝛿′ 
))) , 

 

(3) Maurer bounds:  𝑘𝑙−1 (�̅�𝑇,𝑈,𝛿′(𝑓𝑤),   
1

 𝑚 
ln (

2√𝑚

 𝛿 − 𝛿′ 
)), 

where 𝐾𝐿(𝑄 ∥ 𝑃) in the Catoni bounds and the Maurer bounds has disappeared because it is 

zero if 𝑄 = 𝑃. Note that the denominators in the logarithms in the expressions (2) and (3) 

are replaced by (𝛿 − 𝛿′) from 𝛿 because a part of the uncertainty 𝛿 of generalization bounds 

must be used as the uncertainty 𝛿′ of expected values. In this section, the uncertainty 𝛿′ is 

obtained as the solution of the following equation (e.g., by the Newton method) for 

approximately minimize the expression (3): 

(21−
𝑚
𝑛  √𝑚 ) 𝛿′

𝑚
𝑛 + 𝛿′ − 𝛿 = 0, 

where 𝑚  is the size of the testing dataset and 𝑛  is the number of testing errors repeatedly 

computed with noise added. Similarly, the parameter 𝛽 is given for approximately minimizing 

the expression (2) as follows: 

𝛽 = √ 
2 ln ( 

1
𝛿

 )

 𝑚 �̅�𝑇,𝑈,𝛿′(𝑓𝑤) (1 − �̅�𝑇,𝑈,𝛿′(𝑓𝑤)) 
. 
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The binary KL-inversion 𝑘𝑙−1(𝑞, 𝑏)  in the expressions (1)  and (3)  can be approximately 

computed, for example, by the Newton method (e.g., see Appendix C in [67]). 

 Computational results of generalization bounds 

In this subsection, we report the computational results of the generalization bounds by the 

expressions (1) , (2) , and (3)  described in Subsection 8.3.1, for the following two types of 

neural networks MLP and CNN trained on the dataset MNIST (pixels: 28 × 28, grayscale: [0,1], 

training size: 27,000, and testing size: 10,000) of handwritten digit images. 

– MLP (Multi-Layer Perceptron):  

➢ The total number of the training parameters: 118,282 

➢ The layers: 3 fully connected layers 

– CNN (Convolutional Neural Network):  

➢ The total number of the training parameters: 121,930 

➢ The layers: 2 convolutional layers, 2 pooling layers, and 2 fully connected layers 

For comparing generalization performance, 4 machine-learned models for each neural 

network MLP/CNN were trained in the parameters shown in Table 7.1 

 

Table 7.1  The training parameters in the 4 machine-learned models 

Model ID Dropout rate 𝐿2-Regularization 

#1 0 0 

#2 0 0.001 

#3 0.2 0 

#4 0.2 0.001 

 

Figure 7.4 shows the computational results of the generalization bounds for the machine-

learned models of MLP and CNN (4 models for each), for the SD-rates 𝑟 = 0, … , 0.7, where the 

Chernoff bounds are used for the case 𝑟 = 0 (no noise) and the Catoni bounds are used for the 

cases 𝑟 = 0.1, … , 0.7. The computational results by the Maurer bounds are omitted because they 

were always almost 1% higher than the Catoni bounds. The confidence (1 − 𝛿) , i.e., the 

probability that the generalization errors are less than the generalization bounds, is 90% in 

Figure 7.4. The upper bounds of expected values of testing errors with noise added are computed 

from the averages of 5,000 testing errors with noise added for 10,000 test data samples (i.e., 

𝑚 = 10,000 and 𝑛 = 5,000). For the cases of 𝑟 = 0 and 0.3 in Figure 7.4, the generalization 

gaps (the difference between the generalization bounds and the testing errors) and the 

expectation gaps (the difference between the expected values of testing errors and the averages) 

are shown in Figure 7.5 and Figure 7.6, respectively. 
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(a) The generalization bounds of MLP#1~4    (b) The generalization bounds of CNN#1~4 

Figure 7.4 The computational results by the Chernoff (𝑟 = 0) and the Catoni bounds (𝑟 > 0) 

 

   

(a) The generalization bounds of MLP#1~4   (b) The generalization bounds of CNN#1~4 

Figure 7.5 The generalization gaps in the Chernoff (𝑟 = 0) 

 

    

(a) The generalization bounds of MLP#1~4    (b) The generalization bounds of CNN#1~4 

Figure 7.6 The generalization gaps and the expectation gaps in the Catoni bounds (𝑟 = 0.3) 
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As shown in Figure 7.5, the generalization bounds by the Chernoff bounds are very close to 

the testing errors and the values of the bounds are meaningful on their own (as absolute values). 

On the other hand, as a relative evaluation between machine-learned models, the generalization 

bounds in Figure 7.5 do not show any difference from the (normal) testing errors by data 

samples. For example, the generalization bound of CNN#2 with 𝐿2-regularization is larger than 

the bound of CNN#1 as shown in Figure 7.5 (b). It seems that the generalization bounds are not 

enough to evaluate generalization performance. Then, in order to evaluate the generalization 

performance at different viewpoints from data samples, it is useful to add noise to weights in 

neural networks. Figure 7.4 and Figure 7.6 clearly show that the 𝐿2 -regularization and the 

dropout can suppress increase of the generalization bounds when noise increases. Although 

such suppression-effect is empirically well-known, it is an advantage of the generalization 

bounds that they can quantitatively evaluate such effect and can probabilistically guarantee the 

upper bounds of the generalization errors according to the statistical learning theory. 

In the rest of this subsection, as an example of generalization bounds based on training errors, 

we show a computational result of MLP#4 (i.e., with the dropout and the regularization). In the 

training of MLP#4, each initial weight 𝑤0𝑖   was randomly selected according to the normal 

distribution 𝑃𝑖 = 𝒩(0, 𝜎0𝑖
2 ) , i.e., the mean is 0  and the standard deviation is 𝜎0𝑖  . For each 

weight 𝑤𝑖, the KL-divergence 𝐾𝐿(𝑄𝑖 ∥ 𝑃𝑖) between the prior distribution 𝑃𝑖  and the posterior 

distribution 𝑄𝑖 = 𝒩(𝑤𝑖 , (𝑟|𝑤𝑖|)2) is equal to or larger than (1/2𝑟2). Here, the equality holds if 

𝜎0𝑖 =  𝑟|𝑤𝑖| , but we cannot assume the equality because 𝜎0𝑖   cannot depend on the training 

dataset (i.e., on 𝑤𝑖 ). Then, the minimum of the total KL-divergence of a neural network is 

(𝜔/2𝑟2) , where 𝜔  is the total number of weights. For example, the minimum of the KL-

divergence of MLP#4 (𝜔 = 118,282) in the case of 𝑟 = 0.5 is 236,564. Then, the generalization 

bound of the MLP#4 (𝑟 = 0.5 ) computed by the Catoni bounds is 99.99%  with probability 

90% at least, although the average of 5,000 training errors was 2.17%. The several techniques 

for reducing the generalization bounds based on training errors have been proposed, but it is 

thought to be currently practical to use testing datasets (i.e., the generalization bounds based on 

testing errors). 

7.4 Towards the evaluation of “the stability of trained models” 

The stability of trained models is one of the nine internal quality characteristics described in 

Machine Learning Quality Management Guideline [1] and it represents that machine-learned 

components reasonably behave even for unseen input data. The theorems and the computations 

on the generalization bounds explained in this chapter make it possible to theoretically 

guarantee the probabilistic upper bounds of the generalization errors (i.e., expected values of 

error rates for all data including unseen data). Therefore, the generalization bounds will be one 

of useful methods for evaluating “the stability of trained models.” 

In Subsection 7.3.2, it has been shown that the Chernoff bounds based on testing errors can 

give meaningful values close to generalization errors, In addition, it has been also shown that 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology 
2nd English edition  DigiARC-TR-2023-02 / CPSEC-TR-2023002 

53 

 

the PAC-Bayes bounds (e.g., the Catoni bounds) can gives meaningful perturbated generalization 

bounds based on testing errors (not on training errors) for probabilistic machine learned models 

by adding noise to the weights. Such perturbation bounds make it possible to quantitatively 

evaluate the performance at different viewpoints from normal testing by data samples. 

As an additional investigation, we note the relation between perturbated generalization 

bounds and the randomized smoothing introduced in Subsection 6.2.6. In the randomized 

smoothing, certifiable approximative probabilistic maximum safe radii can be estimated by 

adding noise to input data. We are still investigating the possibility that the perturbated 

generalization bounds can theoretically guarantee robustness in a similar way. 
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8 Adversarial Example Detection 

8.1 Research summary 

With the goal of practically establishing a method for determining whether a given input 

image is an adversarial example, we focus on the following points regarding attacks and 

detection methods that generate adversarial examples. We are conducting a survey of typical 

technologies. 

– Supporting adversarial example detection program code and confirmation by 

computational experiment 

– Reproduction of experimental results of adversarial example detection method papers 

– Implementation of the framework for detecting adversarial examples 

Adversarial example detection stands for detecting adversarial examples from given inputs, 

and existing state-of-the-art adversarial example detection methods can be divided into four 

main categories. 

① Metric based approaches (example [73]) 

② Denoisers approaches (example [74]) 

③ Prediction inconsistency based approaches (example [75]) 

④ Neural Network Invariant Checking (NIC) approaches (example [76]) 

In this chapter, we report the results of additional test experiments to compare and evaluate 

adversarial example detection methods based on each of these approaches ① to ④. As reported 

in the paper [76], it was confirmed that the approach of ④ (NIC: Neural Network Invariant 

Checking) shows the highest detection rate among ① to ④. In this follow-up experiment, the 

published implementation code was used for ① to ③, but the implementation code was not 

published for ④, so a computer experiment was conducted by implementing the NIC according 

to the paper [76]. Therefore, this chapter mainly describes the NIC ④. 

After explaining the outline of the four approaches, the method of detecting adversarial 

examples by the NIC is explained, and the implementation method is described. Then, the results 

of the follow-up experiments of each approach and the experiments by the NIC are described. 

Finally, we report the implementation of the NIC framework and the effectiveness evaluation. 

8.2 Overview of adversarial example detection approaches 

In this section, the four state-of-the-art approaches to adversarial example detection are 

overviewed. 
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 Metric based approaches 

A method of performing statistical measurements of inputs (and outputs of each neuron) to 

detect adversarial examples, Ma et al. recently proposed the use of a measurement called Local 

Intrinsic Dimensionality (LID) [73]. This method estimates the LID value that evaluates the 

space-filling capacity of the area surrounding the sample by calculating the distance distribution 

of the sample and the number of neighbors in each layer, and the adversarial example tends to 

have a large LID value. It uses certain properties to detect adversarial examples. LID is superior 

to traditional kernel density estimation (KD) and Bayesian uncertainty (BU) for detecting 

adversarial examples and is currently the state-of-the-art technology for this type of detector. 

 Denoisers approaches 

It is a method of detecting adversarial examples by removing noise in a preprocessing step 

for each input. In this method, the training model or noise remover (encoder and decoder) is 

trained to filter the image so that the key components in the training model can be highlighted. 

This filter can be used to remove noise added by an attacker to generate adversarial examples 

and correct misclassification. MagNet [74] is a method of detecting adversarial examples using 

detectors and reformers (trained automatic encoders and automatic decoders). 

 Prediction inconsistency based approach 

A method of detecting adversarial examples by measuring the discrepancy between the 

original neural network and the neural network enhanced by human perceptible attributes. 

Feature Squeezing [75], the state-of-the-art detection technique of this method, can achieve very 

high detection rates against a variety of attacks. Feature squeezing focuses on detecting gradient-

based attacks, focusing on the ability of attackers to generate adversarial examples through the 

unnecessarily large input feature space of deep neural networks DNN. The procedure for 

detecting adversarial examples by feature squeezing is shown below. 

1. Apply squeezing technology (a technology that reduces the color depth of an image and 

smooths the image) to the original input image to generate multiple squeezed images. 

2. Input the original input image and multiple squeeze images into the deep neural 

network, and measure the distance between the inference result (prediction vector) of 

the input image and the inference result of each squeeze image. 

3. When one of the differences (distances) between the original input image and the 

squeeze image exceeds the threshold value, the original input image is detected as an 

adversarial example. 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology 
2nd English edition  DigiARC-TR-2023-02 / CPSEC-TR-2023002 

56 

 

 Neural Network Invariant Checking (NIC) approaches 

The NIC (Neural Network Invariant Checking) method focuses on value invariants (VIs) and 

provenance invariants (PIs) inside deep neural networks [76]. The value invariant VI is the 

distribution of possible neuron values in each layer, and the provenance invariant PI is the 

possible neuron value pattern of two consecutive layers (summary of correlation between 

features across two layers). If an input violates these invariants, the input is detected as an 

adversarial example. The NIC [76] method trains these invariant VIs and PIs with benign input 

data and model them as a one-class classification (OCC) problem that detects adversarial 

examples. A higher detection rate has been reported than the methods based on (1) to (3) 

explained above. The outline and the implementation of the NIC system design are explained in 

detail in Sections 8.3 and 8.4, respectively. 

8.3 NIC system design overview 

The procedure for building the NIC detector (steps A to C: during training, D to E: during 

execution) is explained by using Figure 8.1 [76]. This invariant VI, PI training uses only non-

adversarial benign data. 

 

Figure 8.1 Outline of system design (Fig. 8 of thesis [76]) 

– Step A: Collect the output value of each neuron at each layer of each training data input. 

 

– Step B: For each layer 𝑘 (e.g., L1, L2), extract the sub-models from the input layer to 

the 𝑘 layer and add a new softmax layer with the same output label as the original 

model. Then create a derived model (DerivedModel in Figure 8.1) 
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– Step C: Enter each benign training data for all derived models and collect the final 

output of these models (i.e., the output probability values of the individual classes). For 

each set of consecutive layers, we train using the distribution of the classification 

results of this derivative model. This trained distribution is the PI for these two layers. 

 

– Step D: Input each test data 𝑡  (for example, the image of “4” in Figure 8.1) to all 

derivative models in addition to the original model, and observe the activation value of 

each layer of the original model. Collect the value OV (for example, OV(L1, 𝑡) in Figure 

8.1) and the classification result (set) of the derivative model of consecutive layers. 

From this classification result, the observed source OP (for example, OP(L1, L2, 𝑡), etc.) 

is obtained. 

 

– Step E: Calculate the probability D that the OV and OP fit the corresponding VI and PI 

distributions. The possibility that the input 𝑡 is adversarial is predicted at the same 

time by aggregating all these D values. 

8.4 NIC system implementation 

In order to detect adversarial examples based on NIC, a direct sum space (vector) is 

constructed from PI and VI, and for classifying this vector, an OSVM (One Class Support Vector 

Machine) is constructed. When the input to the layer 𝑙  of the trained DNN (Deep Neural 

Network) model (hereinafter referred to as M) is 𝑥𝑙 , the output 𝑓𝑙 of the layer 𝑙 is given by 

the following equation: 

𝑓𝑙 = 𝜎(𝑥𝑙 ∙ 𝑤𝑙
𝑇 + 𝑏𝑙), 

where 𝜎 is the activation function of the layer 𝑙, 𝑤𝑙
𝑇 is the weight matrix, and 𝑏𝑙 is the bias. 

At this time, the direct sum spaces classified by VI, PI, and OSVM are obtained as follows. 

– VI calculation: The VI of each layer 𝑙 of model M is determined by solving the following 

optimization problem. 

𝑉𝐼𝑙 = min [ ∑ 𝐽(𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓1(𝑥) ⋯ 𝑤𝑇 − 1)

𝑥∈𝑋𝑏

] 

Here, 𝐽 is the error evaluation function, and 𝑋𝑏 is the batch used to create M. Also, ∘ 

is a monoid, in this case a vectorized version of 𝑓𝑘 . 

 

– PI calculation: 𝑃𝐼𝑙,𝑙+1(𝑥) is based on the classification output of the derived models of 

the layers 𝑙  and 𝑙 + 1 . The probability that 𝑥  is benign (non-adversarial) is 

estimated by solving the following optimization problem. 

𝑃𝐼𝑙,𝑙+1(𝑥) = min [ ∑ 𝐽(𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝑙(𝑥), 𝐷𝑙+1(𝑥)) ⋯ 𝑤𝑇 − 1)

𝑥∈𝑋𝑏

] 
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Here, a derivative model 𝐷𝑙 of the layer 𝑙 is defined as follows, with the softmax layer 

added after the layer 𝑙. 

𝐷𝑙 = softmax ∘  𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓1 

 

– Direct sum space of PI and VI: From the VI and PI obtained by the above optimization, 

the following direct sum space (vector) is created for each batch of training data of 

model M.  

𝑉𝐼1 ⨁ 𝑃𝐼1,2 ⨁ 𝑉𝐼2 ⨁ 𝑃𝐼2,3 ⋯ 𝑉𝐼𝐵 ⨁ 𝑃𝐼𝐵−1,𝐵  ⨁ 𝑉𝐼𝐵 

This vector is 𝐿 × 3 dimensions (𝐿 is the number of layers of M), which is the vector 

space (direct sum space) of the number 𝐵. The NIC performs OSVM on this space. 

8.5 Computer experiment 

In order to confirm the effect of adversarial example detection technology (NIC), the 

experiment of the paper [76] was retested in the following experimental environment. 

– Hardware environment: AIST ABCI [77] 

– Datasets: Two common image datasets, MNIST [78] and CIFAR-10 [79], were used for 

image classification experiments. MNIST is a grayscale image dataset used for 

handwritten digit recognition, and CIFAR-10 is a color image dataset used for object 

recognition. For NIC, we also conducted an experiment on LFW (face image) [80]. 

– Attacks: Non-targeted attacks (FGSM 𝐿2 ,𝐿∞ ), targeted attacks JSMA, and gradient-

based attacks (CW 𝐿2) were used to generate adversarial examples. The Cleverhans 

library [81] was used to implement FGSM and JSMA 

First, in order to evaluate the adversarial example detection method based on each of the 

approaches ① to ③, the published implementation code of LID [73], MagNet [74], and feature 

squeezing [75] was used to evaluate each paper. Then, follow-up experiments were conducted. 

As the result, the detection rates reported in each paper were able to be confirmed, and among 

these three, feature squeezing showed the highest detection rate. 

Next, in order to evaluate the adversarial example detection method based on the approach 

④, an experiment was conducted using the NIC code implemented in Section 8.4. Table 8.1 to 

Table 8.3 show the results of adversarial example detection and computational experiments on 

the MNIST, CIFAR-10, and LFW datasets, respectively. Here, the correct answer rate is the rate at 

which adversarial examples are input to the classifier (OSVM) described in Section 7.4 and are 

determined to be adversarial examples. The CNN model used in the experiment is LeNet5, and 

the OSVM Kernel is RBF (MNIST: γ = 0.1 to 0.27, CIFAR-10: γ = 0.11 to 0.2, LFW: γ = 0.005 to 

0.90). In the results of this experiment, high detection performance was confirmed not only for 

the dataset and attack method reported in the paper [76], but also for the unreported dataset 

LFW and attack method (FGSM 𝐿∞). 
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Table 8.1 Adversarial example detection computational experiment results for MNIST dataset 

Data Set Attack Invariant Performance Number  

of data 

Performance reported 

in the paper [76] 

MNIST FGSM 𝐿2 VI 97% 2800 100% 

PI 98% 84% 

NIC 97% 100% 

FGSM 𝐿∞    VI 98% 2800 ― 

PI 98% ― 

NIC 98% ― 

JSMA VI 100% 280 83% 

PI 100% 100% 

NIC 100% 100% 

CW2 VI 100% 280 95% 

PI 100% 96% 

NIC 100% 100% 

Trojan VI 100% 3200 100% 

PI 100% 100% 

NIC 100% 100% 

 

Table 8.2 Adversarial example detection computational experimental results for CIFAR-10 dataset  

Data Set Attack Invariant Performance Number 

of data 

Performance reported 

in the paper [76] 

CIFAR-10 FGSM 𝐿2 VI 99% 6400 100% 

PI 99% 52% 

NIC 99% 100% 

FGSM 𝐿∞    VI 100% 6400 ― 

PI 100% ― 

NIC 100% ― 

JSMA VI 97% 320 62% 

PI 95% 100% 

NIC 96% 100% 

CW2 VI 98% 320 88% 

PI 95% 89% 

NIC 96% 100% 

Trojan VI 100% 3200 100% 

PI 100% 100% 

NIC 100% 100% 
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Table 8.3 Adversarial example detection computational experiment results for LFW dataset 

Data Set Attack Invariant Performance Number  

of data 

Performance reported 

in the paper [76] 

LFW FGSM 𝐿2 VI 98% 28222 

 
― 

PI 98% ― 

NIC 98% ― 

FGSM 𝐿∞    VI 100% 2822 

 
― 

PI 100% ― 

NIC 100% ― 

JSMA VI 100% 280 

 
― 

PI 100% ― 

NIC 100% ― 

CW2 VI 100% 840 

 
― 

PI 100% ― 

NIC 100% ― 

Trojan VI 100% 3200 ― 

PI 100% ― 

NIC 100% ― 

 

8.6 Implementation of the NIC framework 

We have implemented a simplified NIC method based on Sections 8.3 and 8.4 in order to 

conduct the computer experiments for confirming the effectiveness of NIC in Section 8.5. In the 

simplified implementation, we have found some implementation issues in the original paper 

[76]. In this section, while clarifying the issues, we reconsider the algorithm in order to construct 

the NIC framework for high detection rates of adversarial examples on the testbed, that is used 

for creating an environment (attack, defense and detection) to benchmark vulnerability to 

adversarial examples. 

 Overview of the NIC framework 

The NIC framework consists of five parts: taking output from each layer; calculating VI and PI 

for normal data; calculating VI, PI and NIC for adversarial examples; evaluating OSVM and 

displaying results. The use case of the NIC framework is shown in Figure 8.2. In addition, the 

process steps for detecting adversarial examples are shown in Figure 8.3. 
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Figure 8.2 NIC framework use cases 

 

 
Figure 8.3 Processing procedures for adversarial example detection by the NIC framework 

 

As shown in Figure 8.3, the overall processing procedure for adversarial example detection 

by the NIC framework consists of five parts. The function of each part (input, processing and 

output) is shown in Table 8.4. 

 Output of OSVM evaluation results 

The NIC framework has been implemented using scikit-learn, that is a Python machine 

learning library. For example, the scikit-learn's OneClassSVM class is used for implementing the 

final part of the OSVM as shown in Figure 8.3 as follows. 

class sklearn.svm.OneClassSVM(array, kernel='rbf', gamma='auto', nu=0.3) 

Here, the meaning of each argument is as follows. 

・ array: parameters trained by normal data and used for detecting adversarial examples in 

NIC. 

・ kernel: the RBF kernel is used as the algorithm for One Class SVM. 

・ gamma: the gamma parameter of the RBF kernel is set to 'auto'. 

・ nu: the upper limit for the percentage of training error and the lower limit for the 

percentage of support vector are set to 0.3 in this case. 
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Table 8.4 Functions of the parts comprising the adversarial example detection process procedure 

Output extraction from each layer 

input Normal data (images) 

Adversarial examples (image). 

Trained models, trained on normal data (models trained on normal data) 

processing Obtain the output of each layer of the trained model for normal and adversarial 

examples and save it in 'numpy in numpy' format. 

output (e.g. 

of dynamo) 

Output data from each layer 

 

VI and PI calculations for normal data 

input Output data from each layer of normal data 

processing Calculate VI, PI from the output data of each layer of normal data. 

output (e.g. 

of dynamo) 

VI, PI 

 

VI and PI calculations for adversarial examples 

input Output data from each layer of adversarial examples 

Created at the time of calculation to PI with normal data Derived model of PI 

processing Compute VI, PI from the output of each layer of adversarial examples. 

output (e.g. 

of dynamo) 

VI, PI 

 

Calculation of NIC 

input VI of normal data, PI 

VI of adversarial examples, PI 

processing NIC of normal data is created from VI and PI of normal data and NIC of 

adversarial examples is calculated from VI and PI of adversarial examples, 

respectively. 

output (e.g. 

of dynamo) 

NIC for normal data, NIC for adversarial examples 

 

Evaluation and display of results in OSVM. 

input NIC of normal data 

NIC for adversarial examples. 

processing Train OSVM on normal data to create a model, and use this trained model to 

judge adversarial examples; OSVM uses sk-learn's one class svm API. The 

judgement results are then displayed. 

output (e.g. 

of dynamo) 

Assessment Results 
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Figure 8.4 shows output values from each layer when one normal data and its adversarial 

examples are input to the NIC framework, where the horizontal axis is the ID of the model 

derived to calculate the NIC at each layer (Note. There are multiple outputs from each layer for 

one image, for example, a convolution layer in CNN), and the vertical axis represents the signed 

distance of each NIC to the One Class SVM classification hyperplane of the NIC of the normal data, 

that is the closeness to the normal data in this case. The black dots in Figure 8.4 (a) represent 

the output relative to the normal data, the red dots in Figure 8.4 (b) are the outputs for 

adversarial examples. In this calculation, the adversarial examples in Figure 8.4 (b) were 

generated by using the FGSM 𝐿∞ attack method. 

 

(a) Normal input data           (b) Adversarial input data 

Figure 8.4 Comparison of NIC framework outputs 

 

After training One Class SVM by normal data, One Class SVM function 𝑓(𝑥) can be used for 

detecting adversarial examples such that if 𝑓(𝑥) ≥ 0 then the input 𝑥 is normal otherwise it 

is adversarial. Most of the output for normal data are close to zero as shown in Figure 8.4 (a), 

while approximately 94% of the outputs for adversarial examples are explicitly less than zero as 

shown in Figure 8.4 (b). This difference of the output between Figure 8.4 (a) and (b) explains 

that NIC can effectively detect adversarial examples. 

 Generation of adversarial examples 

As shown in Figure 8.3, NIC framework does not include the program for generating 

adversarial examples. We recommend for using CleverHans [82] if adversarial examples are 

necessary. Figure 8.5 shows some examples in the normal (original) images of handwritten 

numbers (MNIST) and the adversarial examples generated from the normal images by attack 
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method FGSM 𝐿2 with the misclassified labels inferred for the adversarial images. As shown in 

the inference results (label 8) in Figure 8.5 (b), all generated adversarial examples are 

misclassified as 8. 

 

 

(a) Original MNIST data   (b) Generated adversarial examples 

Figure 8.5 Example of adversarial example generation from MNIST (handwritten numbers) images  

and its decision results 

 Reducing calculation costs for VI, PI and VIC 

The calculation method for VI, PI and NIC in the original paper [76] has been explained in 

Section 8.4, but if the calculation method is used, then the dimension of each data (vector) 

becomes very large, due to the problem so-called 'dimension demon'. Therefore, we have tried 

to reduce the dimension as much as possible. In the following section, we explain how each 

calculation is simplified. 

– Calculation of VI: in the NIC framework, let 𝑋𝐵 = 1 for clarifying the correspondence 

between the input data (both normal and adversarial data) and the VI, PI and NIC (i.e., 

for the accuracy of the verification). In addition, as all input data are normalized and 

calculated, the following simplified formula is used: 

𝑉𝐼𝑙 = 𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓2 ∘ 𝑓1. 

– Calculation of PI: as in the case VI above, let 𝑋𝐵 = 1. Then, the following simplified 
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formula is used: 

𝑃𝐿𝑙,𝑙−1 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝑙 , 𝐷𝑙−1) ∘ ⋯ ∘ 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷2, 𝐷1). 

– NIC calculations: for dimensionality suppression, 𝑋𝐵 is set as follows: 

𝑋𝐵 = (The number of layers from which output are obtained) 

8.7 Evaluation of the effectiveness of NIC with the Kullback-Leibler divergence 

This section reports the results of the evaluation of the effectiveness of the NIC by calculating 

the degree of divergence between the images of normal and adversarial examples and the NIC 

by using the Kullback-Leibler divergence. 

 Kullback-Leibler divergence 

The Kullback-Leibler divergence, denoted by 𝐾𝐿(𝑃 ∥ 𝑄) , is a measure of the degree of 

divergence between two probability distributions 𝑃 (the probability density functions 𝑝) and 

Q (the probability density function 𝑞 ). The Kullback-Leibler divergence is defined by the 

following equation. 

𝐾𝐿(𝑃 ∥ 𝑄) = ∫ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
 

The Kullback-Leibler divergence is 0 when the two distributions are the same, and it increases 

as the divergence increases (the convergence is not guaranteed due to the presence of log). 

Figure 8.6 shows a simple calculation example of the Kullback-Leibler divergence. In Figure 8.6 

(a), both of the distributions 𝑃  and 𝑄  are the same normal distribution whose mean and 

variance are 0.5 and 0.5, respectively, and then the 𝐾𝐿(𝑃 ∥ 𝑄) is 0. In Figure 8.6 (b), the means 

of 𝑃 and 𝑄 are 0.5 and 0.55, and the variance of them are 0.5 and 0.55, respectively, and then 

the 𝐾𝐿(𝑃 ∥ 𝑄) is 0.053. 

 

 

(a) In the case of the same distributions    (b) In the case of the different distributions 

Figure 8.6 Example of Kullback-Leibler divergence calculation 
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 Kullback-Leibler divergence estimation 

The Kullback-Leibler divergence assumes that the probability distributions to be compared 

are fixed, but in practice, both normal and adversarial data are simply sets of images and the 

distributions are unknown. Fortunately, a method for approximating the Kullback-Leibler 

divergence between sets with unknown probability distributions [83] is known. The outline of 

the approximation method calculates the Kullback-Leibler divergence as a solution of an 

optimization problem on the following linear polynomial of  𝑟𝜃(𝑥)  as the constraint for 

minimizing the density ratio 𝑟(𝑥) = 𝑝(𝑥)/𝑞(𝑥): 

𝑟𝜃(𝑥) = ∑ 𝜃𝑗𝜓𝑗(𝑥) = 𝜽𝑇𝝍(𝑥)

𝑏

𝑗=1

, 

where 𝜓𝑗(𝑥) is the RBF kernel and is defined by 

𝜓𝑗(𝑥) = exp (−
‖𝑥 − 𝑥′‖2

2ℎ2
), 

where ℎ is a determinable constant and is the bandwidth. 

Then, the Kullback-Leibler divergence can be approximately calculated by the linear 

polynomial 𝑟𝜃(𝑥) obtained as the solution of the optimization problem as follows [83]: 

𝐾𝐿(𝑃 ∥ 𝑄)  ~  
1

𝑛
∑ log 𝑟(𝒙𝑖)

𝑛

𝑖=1

 

 Effectiveness evaluation of NIC  

In Section 8.5, we have shown that the NIC method can effectively detect adversarial 

examples as anomaly data by experiments. In this section, we show the degree of divergence 

between normal data and adversarial examples by comparing the Kullback-Leibler divergence 

of them for explaining the reason why NIC is effective.  

At first, Figure 8.7 shows the computational results of the Kullback-Leibler of normal data 

and adversarial examples (generated by the attack method FGSM 𝐿2) for 50 image data samples, 

as shown in Figure 8.5. The approximate value of the Kullback-Leibler divergence for the FGSM 

in Figure 8.7 is 0.46. Here, note that the average value of the multiple Kullback-Leibler divergence 

is shown in Figure 8.7 because there are multiple values of NIC for one image as explained in 

Figure 8.4. 

Next, Figure 8.8 shows the computational results of the Kullback-Leibler of NIC of the normal 

data and the adversarial examples used in Figure 8.7. The approximate value of the Kullback-

Leibler divergence in Figure 8.8 is 4.47. Therefore, the Kullback-Leibler divergence in Figure 8.8 

is about 10 times larger than one in Figure 8.7. We conjecture that the results mean that the 

perturbations added to normal data can be extracted as more explicit difference by the NIC 

method. 
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Figure 8.7 The Kullback-Leibler divergence for normal and adversarial examples 

 

 
Figure 8.8 The Kullback-Leibler divergence of NIC for normal and adversarial examples 
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9 AI Quality Management in Operation 

In this chapter, we report on the results of a survey on the latest technologies for detecting 

changes in data distribution over time, called concept drift, and adapting machine learning 

models to the changed distribution for AI quality management during operation. In addition, we 

also introduce the results of a survey on the latest unsupervised domain adaptation technologies 

published at recent international major conferences on machine learning and computer vision 

for further development of the AI quality management technologies. 

Concept drift is one of the main causes of performance degradation of machine learning 

models running in AI systems during operation. In order to maintain quality that is satisfied at 

the beginning of the operation of the system throughout the operation period, it is necessary to 

continuously monitor whether drift occurs or not. In addition, if necessary, we retrain the 

machine learning models in the system with the latest data to adapt them to the distribution of 

data changed after the drift occurs. As the use of machine learning technologies has been 

expanded in recent years, AI systems operating with such technologies will require processing a 

large amount of data without their true labels (ground truths) in a short period of time, including 

types of data that have not been handled in the past. 

In the fiscal year 2019-2020, we conducted a survey on the latest technologies for detecting 

and adapting to the concept drift to maintain the performance of machine learning models 

during operation. As a result of this survey, we found that most of the methods developed so far 

are supervised methods that use true labels of data additionally acquired during operation for 

the detection and adaptation. However, such true labels are not always available or are often 

costly even if they are available. In order to expand the applicability of the detection and 

adaptation methods and reduce their operational costs, we found that an "unsupervised 

method" that does not use the true labels or a "semi-supervised method" that uses only a limited 

number of the true labels is promising. We summarized the results of the surveys organized and 

discussed from this perspective.  

For details on the survey on detection methods, see Section 7.8 of the Machine Learning 

Quality Management Guidelines [1]. In addition, adaptation methods are summarized in our 

survey result [84]. Table 9.1 shows the comparison of our survey with the other existing surveys 

on concept drift detection and adaptation methods. Gama et al. summarized their survey result 

in [85] and Lu et al. added recently published drift detection and adaptation methods in [86]. 

Those survey papers mainly focus on introducing "supervised" methods that use true labels of 

operational data for drift detection and adaptation. On the other hand, Ishida et al. introduced 

"unsupervised" concept drift detection methods that do not use true labels of data for drift 

detection in [87]. In comparison with those existing survey results, we introduced 

"unsupervised" and "semi-supervised" concept drift adaptation methods that do not use or use 

only a limited number of true labels as mentioned above. Furthermore, we introduced those drift 

adaptation methods based on the characteristic of each method. In detail, we listed ten 

remarkable unsupervised/semi-supervised drift adaptation methods and classified them 
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according to: i) types of drift that can be dealt with effectively, ii) processes where true labels of 

data are required during operation and the percentage of the labeled data used in verifications 

shown in the papers, and iii) machine learning models or clustering methods used in each 

method. Finally, we closed our survey by discussing further development of unsupervised and 

semi-supervised concept drift adaptation methods using knowledge obtained from relevant 

unsupervised domain adaptation techniques. 

 

Table 9.1 Comparison of survey papers on concept drift detection and adaptation  

 Detection Adaptation 

Supervised Gama et al.[85], Lu et al.[86] 

Unsupervised / 

Semi-supervised 
Ishida et al.[87] 

Okawa and Kobayashi [84], [88] 

(Ours) 

 

In the future operation of AI systems, there is a growing need for new adaptation techniques 

that do not use the original training data (i.e., source data) to adapt machine learning models 

from the viewpoint of data privacy and portability in addition to that can deal with changes other 

than those in the distribution of input data. In particular, adaptation techniques that do not 

depend on such training data (source data) are called "source-free domain adaptation 

techniques" or "test-time adaptation techniques (if they adapt online)”. These source-free and 

test-time adaptation technologies have been attracting more attention because they can reduce 

costs not only on management and transmission of source data for adaptation but also on 

security for data storage. 

In FY2021, following the above-mentioned surveys, we conducted a survey on the latest 

research trends in unsupervised adaptation techniques to data changes presented at major 

international conferences in the fields of machine learning and computer vision held in 2019-

2021, focusing on unsupervised concept drift adaptation techniques and unsupervised domain 

adaptation techniques. The result of this survey is summarized in [88]. In detail, we listed and 

introduced 15 remarkable concept drift detection and unsupervised domain adaptation 

methods and classified them according to: i) kinds of adaptation problems, ii) kinds of data and 

labels used in detection and adaptation, iii) availability for adaptation to label shift, and iv) kinds 

of validation tasks. According to the results of this survey, it is shown that there has been 

development of the source-free adaptation and test-time adaptation techniques mentioned 

above and adaptation techniques that are able to adapt to changes other than the distribution of 

input data, such as label shifts. Furthermore, some techniques have been validated not only for 

image classification problems, but also for semantic segmentation and object detection 

problems. These research trends in unsupervised adaptation techniques are expected to solve 

new problems in AI operations, such as maintaining data privacy, and to be used in various 

situations in future AI operations. 
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