

機械学習品質マネジメントガイドライン 第 2 版
付属文書 2:

開発事例リファレンスに関するプレリミナリレポート

Machine Learning Quality Management Guideline, 2nd revision
Annex 2: Preliminary reference report for Application examples

2020 年度版
Revision FY 2020

2021 年 7 月 5 日
July 5, 2021

産業技術総合研究所
National Institute of Advanced Industrial Science and Technology

デジタルアーキテクチャ研究センター テクニカルレポート
Technical Report － Digital Architecture Research Center

DigiARC-TR-2021-03

サイバーフィジカルセキュリティ研究センター テクニカルレポート
Technical Report － Cyber Physical Security Research Center

CPSEC-TR-2021-003

人工知能研究センター テクニカルレポート
Technical Report － Artificial Intelligence Research Center

はじめに

本レポートは、機械学習品質マネジメントガイドライン第 1 版（CPSEC-TR-2020001）

及びその英語版 (CPSEC-TR-2020002) を元に、産業技術総合研究所内でいくつかの想定
事例にガイドラインを模擬適用した際の知見をまとめたものである。

2020 年度は、以下の 5 つの事例にガイドラインを模擬適用した。

1. 物体認識（object detection）(英語)
車の自動運転のための物体認識アプリケーション。BDD100K というオープンデー
タを事例として用い、物体認識 AI の品質評価における特に AI Performance とリ
スク回避性の評価を検討した結果をまとめた。

2. 外観検査（visual inspection）(英語)
金属製品の傷や凹みなどの欠陥を認識する外観検査アプリケーションの試験構築
を行い、ガイドラインに沿った品質評価を実施した。欠陥データの数が少ないため、
データ Augmentation による訓練データの被覆性の評価に重点を置いた。

3. 自動運転判断（intelligent wheelchair）(日本語・英語)
自動運転を行う車椅子の人物認識アプリケーションを想定し、特に安全性のため
のリスク回避性の品質評価プロセスに主眼を置いた検討を行い、知見をプロセス
管理に用いるアセスメントシートにまとめた。
なお、このリスクアセスメントシートについては、ガイドライン第 2 版への最低限
の対応を行ってある。

4. 価格予測（house price prediction）(英語)
Regression を行うアプリケーションの品質評価事例として、オープンデータ
Kaggle に含まれる住宅価格予測アプリケーションの品質評価をガイドラインに沿
って実施した。訓練データに偏りがあるため、これに合致するようにアプリケーシ
ョンの適用範囲を絞ることに注力した。

5. 郵便番号認識（postal code detection） (英語)
MNIST の数字認識アプリケーションを郵便番号認識に活用する想定で品質評価
を行い、特に Robustness の評価手法について検討した。

About this report

 This preliminary report is a summary of our knowledge obtained from application of
“Machine Learning Quality Management Guideline” (Japanese and English, 1st revision;
CPSEC-TR-2020001 and CPSEC-TR-2020002) to trial development of AI systems for
several application domains. The domains chosen for this fiscal year’s trials are following:

1. object detection (English)

Using the open data BDD100K as a case study for object recognition applications for
automatic car driving, we examined the quality evaluation of object recognition AI,
especially AI performance and risk reduction.

2. visual inspection (English)
A visual inspection application that recognizes defects such as scratches and dents on
metal products was constructed experimentally and evaluated its quality in accordance
with the Guideline. Since the number of defect data is small, we focused on evaluating
the coverage of the training data by data augmentation.

3. automated driving decision (intelligent wheelchair) (Japanese and English)
Assuming a human recognition application for an automated wheelchair, we studied the
quality assessment process for safety risk avoidance, and created an assessment sheet for
process management.
This risk assessment sheet is minimally adapted to the second edition of the guideline. 4.

4. house price prediction (English)
As a case study of quality evaluation of an application that performs regression, we
performed a quality evaluation of a house price prediction application included in the
open data Kaggle, according to the Guideline. Given the bias in the training data, we
focused on narrowing down the scope of the application to be consistent with this bias.

5. postal code detection (English)
We evaluated the quality of MNIST's numeric recognition application for postal code
detection, especially the evaluation method for robustness.

Reference guideline for Object Detection and Scene
Classification task for Autonomous Driving Vehicle

Contents
1. Purpose of the technical report: ... 4

2. Expected outcomes: .. 4

3. Author’s role: .. 4

4. Product specifications: .. 4

4.1 Model Specifications: .. 4

4.2 Safety specifications:... 5

4.3 KPI specifications: ... 6

4.3.1 Object detection task: .. 6

4.3.2 Scene classification task: .. 6

5.Proof of Concept (PoC) phase: ... 6

5.1 Initial investigation of existing dataset: .. 6

5.2 Distribution of data: .. 8

5.2.1 Classification task: .. 8

5.2.2 Object detection task: .. 9

5.3 Preliminary training of contender models: ... 9

5.3.1 Preprocessing steps: .. 9

5.3.2 Hyper-parameter specifications: ... 10

5.3.3 Validation results: .. 10

5.3.4 Additional information: .. 10

5.4 Insights from PoC phase:... 11

6. Designing development phase: ... 12

6.1 Incorporation of MLQM guideline: ... 12

6.2 Adjustment of standards of quality management: ... 12

7. Internal quality evaluation using MLQM guideline... 13

7.1 Sufficiency of requirement analysis: ... 13

7.1.1 Definition of ‘Sufficiency of requirement analysis’: ... 13

7.1.2 Redefining problem domain: ... 13

7.1.3 Proposed problem domain: ... 14

7.1.4 Example of training data described using the proposed domain: ... 15

7.1.5 Comparison of existing domain with proposed domain .. 15

7.1.6 Approaches considered to adopt existing dataset with proposed domain 16

7.1.7 Re-designing dataset: ... 17

7.2 Coverage for distinguished problem cases: .. 18

7.2.1 Definition of ‘coverage of distinguished problem cases: ... 18

7.2.2 Steps required for evaluation: ... 18

7.2.3 Example of evaluation process: ... 19

7.2.4 Identifying special cases: .. 21

7.3 Coverage of dataset .. 22

7.3.1 Definition of ‘Coverage of dataset’: ... 22

7.3.2 Steps required for evaluation: ... 23

7.3.3 Example evaluation process: ... 23

7.3.4 Insights from recorded results: .. 25

7.4 Uniformity of dataset .. 26

7.4.1 Definition of ‘Uniformity of dataset’ .. 26

7.4.2 Steps required for evaluation .. 26

7.4.3 Example evaluation process... 27

7.5 Correctness of the trained model ... 30

7.5.1 Definition of ‘Correctness of the trained model’ ... 30

7.5.2 Decisions from PoC phase: ... 30

7.5.3 Evaluation procedure for correctness of object detection models 31

7.6 Stability of the trained model ... 34

7.6.1 Definition of ‘stability of the trained model .. 34

7.6.2 Steps required for evaluation .. 35

7.6.3 Evaluating generalization capability .. 35

7.6.4 Evaluating robustness to adversarial images ... 37

7.7 Dependability of underlying software system .. 50

7.7.1 Definition of ‘Dependability of underlying software system’: ... 50

7.7.2 Correctness of algorithms .. 50

7.7.3 Soundness of open-source elements: .. 50

7.7.4 Dependability of hardware in training and operational environment: 51

7.7.5 Soundness in usage of memory ... 51

7.7.6 Efficiency in training time and inference time: .. 51

7.8 Maintainability of quality during operation .. 52

7.8.1 Definition of ‘maintainability of quality’ .. 52

7.8.2 Accuracy monitoring .. 52

7.8.3 Model output and input data monitoring .. 52

7.8.4 KPI monitoring ... 52

7.8.5 Example: KPI - Residential + foggy ... 57

Glossary: .. 58

Appendix: .. 59

Automotive Safety Integrity Level (ASIL): ... 59

References .. 60

1. Purpose of the technical report:
The goal of this report is to create an example implementation to demonstrate how Machine Learning
Quality Management (referred as MLQM from here after) guideline can be used to evaluate internal
properties of an autonomous driving dataset and the AI solutions created using this dataset. This report
can be used as a reference for application of the guideline in evaluation of similar AI based systems.

2. Expected outcomes:
Following outcomes are expected to achieve by applying MLQM guideline to an AI based product:

− Setting out well-defined standards for assessing qualities for the product; these specified
standards can be used by ‘development entrustee’ aka ’service developer’ during designing and
development stage and by ‘development entrusted’ aka ’user’ while in evaluation stage for
measuring the promised quality of the final product

− Creating a clear demonstration of the product’s quality, safety and reliability for the final users
− Identifying safety-critical scenarios in advance to reduce risks of accidents from possible

erroneous behaviors of AI models

3. Author’s role:
Here, the authors play the role of ‘development entrustee’ also known as the ’service developer’. The
guideline is considered as a ‘technical starting point’ for developing the service in question and will be
followed from early development stage to ensure quality standards are maintained throughout the
process.

4. Product specifications:
This section describes the specifications of the final product or the anticipation of client about the AI
solution. For the specific problem of object detection and classification for autonomous driving scenarios,
the final product constitutes of machine learning models which is built using supervised learning. The
tasks performed by the ML models are scene understanding/scene classification and object detection
from images. Hence, both the classification model and the object detection model will be sharing the
same dataset. Since the two modules have specific responsibilities, it must be confirmed that the defined
quality standards satisfy requirements related to both tasks. The final product is expected to correctly
recognize objects regularly encountered in autonomous driving scenarios in all possible climate conditions,
traffic and road conditions, time zones and lighting conditions.

4.1 Model Specifications:
Anticipation of the specifications for the models to be developed are given below. Contender models can
include (but not limited to) the architectures given in this section:

 Type of learning: Supervised
 Type of AI model: Classification and object detection

 Initial dataset: The initially chosen dataset to use for training is known as ‘BDD100K dataset’
which is a large-scale video dataset. The original dataset contains annotations of images for
various purposes such as road object detection, lane marking, drivable area etc.

 Contender model architectures:

i. Task: Road Object detection
● YOLOv3 [Redmon, 2018]
● YOLOv3 + ASFF [Liu, 2019]
● YOLOv4 [Bochkovskiy, 2020]
● YOLOv5 [Jocher, 2021]
● Faster R-CNN [Ren, 2016]
● M2Det [Zhao, 2019]
● EfficientDet-D2 [Tan, 2020]
● MobileNetv1 [Howard, 2017]
● MobileNetv2 [Sandler, 2019]

ii. Task: Scene classification:
• VGG19 [Simonyan, 2014]
• ResNet50 [He, 2016]
• InceptionV3 [Szegedy, 2016]

4.2 Safety specifications:
ASIL (Automotive Safety Integrity Level) is being used to specify required safety level for this AI product.
ASIL D is specified to be maintained as the requirement level of safety. ASIL D represents likely potential
for severely life-threatening or fatal injury in the event of a malfunction and requires the highest level of
assurance that the dependent safety goals are sufficient and have been achieved.

ASIL may be similarly expressed as

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 ∗ 𝐶𝐶𝐸𝐸𝐶𝐶𝑆𝑆𝑆𝑆𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑦𝑦)

In terms of the classifications provided by ASIL(details in Appendix) an ASIL D is defined as an event having
reasonable possibility of causing a life-threatening (survival uncertain) or fatal injury, with the injury being
physically possible in most operating conditions, and with little chance the driver can do something to
prevent the injury. That is, ASIL D is the combination of S3, E4, and C3 classifications. More information
about this is written in the appendix.

As consequence, the relation between ASIL D and autonomous car is that the system needs to detect
objects to avoid any type of situation that can cause any severe accident (S3 and E4). Regarding C3, it is
not one of the aims in this research. To focus on C3, the detection models needs to be trained to detect
the street lines where the car goes. For this reason, in this report, the KPI will be defined using S3 and E4
and assume that C3 is always accomplished.

4.3 KPI specifications:
Key Performance Indicator (KPI) quantifies the attainment level of functional requirements to be attained
by output from machine learning components through machine learning based systems. For the two
major ML models involved in this report, initial KPI specifications are given below:

4.3.1 Object detection task:
Object detection algorithms are usually evaluated based on metrics such as the mAP or the F1-score.
Regarding the detection ability of an AI model, mAP is considered as the suitable candidate since it is
defined as the area under the Precision-Recall curve computed for a certain IoU threshold. In other words,
mAP involves Precision, Recall, and IoU, which makes it an attractive choice regarding a measure of the
detection strength of a given model.

4.3.2 Scene classification task:
Classification models are usually evaluated based on metrics such as confusion matrix, accuracy, precision,
recall, specificity and F1 score. Accuracy should be considered as the KPI when attribute values for a
certain feature/attribute are well-balanced. For unbalanced classes, precision, recall or F1 score should
be considered to evaluate model’s performance. In case of AI application for autonomous vehicles where
safety-critical cases should be a prime concern, use of precision and recall can provide more detail
information about the model’s performance in high risk cases with respect to false positives and false
negatives. So, F1 score can be considered as KPI where class labels are not well-balanced and it is
necessary to deal with high risk cases.

5.Proof of Concept (PoC) phase:
5.1 Initial investigation of existing dataset:
For the creation of the classification task and object detection task explained in this reference guide,
diverse datasets have been considered. There are a lot of datasets related to autonomous driving, but
among those, following datasets are used in primary investigation:

Dataset # Labels # Images has weather has time of day 3d bounding
box

2d bounding
box

BDD100k 10 100000 Yes Yes No Yes
CityScapes 30 5000 No No No Yes
Kitti 14 14999 No No No Yes
Semantic Kitti 28 14999 No No No No
Audi A2D2 (segmentic
segmentation) 38 41280 No Yes (timestamp) Yes Yes

Audi A2D2 (bounding
boxes) 14 12499 No Yes (timestamp) Yes Yes

PandaSet 28 48000 No Yes (timestamp) Yes Yes
NuScenes 23 1400000 No Yes (timestamp) Yes No
Apolloscape 25 146997 No Yes (timestamp) Yes No
Canadian Adverse Driving
Conditions Dataset 10 56000 No Yes (timestamp) Yes No

For this research, it is necessary to know the weather and time of day of the images in the dataset. Only
BDD100k and Oxford Robotcar Dataset accomplish these requisites. However, Oxford Robotcar Dataset
does not include labeling in their images. As a consequence, the best option for this research is BDD100k
[Yu, BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning, 2020] with its Github
repository [Yu, 2021]. BDD100k has 100,000 of images all of them with 2d bounding boxes. The dataset
has been split in 3 for training, testing and validation using 70%, 20% and 10% of the dataset respectively.
For this research the default splitting given by the dataset authors has been used. Following information
are collected from an initial investigation of the dataset.
 Total images in training: 70,000
 Annotated images in training dataset using json format: 69,863
 Total images in validation: 10,000
 Annotated images in validation dataset using json format: 10,000
 Given attributes and attributes values for ‘classification’ task:

o Weather: rainy, snowy, clear, overcast, undefined, partly, cloudy and foggy
o Scene: tunnel, residential, parking lot, undefined, city street, gas stations and highway
o Time of day: daytime, night, dawn/dusk and undefined

 This dataset has 10 labels to identify objects: Bus, Light, Sign, Person, Bike, Truck, Motor, Car,
Rider and Train

 Labels for BDD100k images also include additional information on Occlusion, Truncation, Traffic
light color, Lane direction, Lane style and Lane type.

Additional useful information from BDD100k labels is presented below:

Table 2: Additional information from BDD100k dataset labels

Waymo Open Dataset 4 200000 No No Yes Yes
Lyft Perception Dataset 23 450000 No Yes (timestamp) Yes No
Oxford Robotcar Dataset - 20000000 Yes Yes No No

Table 1: Dataset comparison

OCCLUDED TRUNCATED
LANE
DIRECTION

LANE
STYLE

TRUE TRUE parallel solid

FALSE FALSE vertical dashed

LANETYPEs

crosswalk

double other

double white

double yellow

road curb

single other

single white

single yellow

TRAFFIC LIGHT
COLOR

red

green

yellow

none

Area type

Alternative

Direct

5.2 Distribution of data:
Basic distribution analysis for the available dataset is given below:

5.2.1 Classification task:
For the classification task using BDD100k, in this guide reference, the solution designer has focused on
scene, weather and time of day attributes. These 3 have more priority than the others in terms of the
visualization of the images and are more relevant to ASIL D than the others.

The following charts show the distribution of the attribute values of Scene, Weather and time of day

 Training dataset statistics:

Validation dataset statistics:

Figure 1: Statistics for BDD 100k-classification task for 3 different attributes in training and validation
datasets

It is evident that there are some attribute values that appear more often than others, such as, daytime
and clear. As well, there are attribute values that does not appear often in the dataset, such as, tunnel.
Such attribute values may need a treatment the number of images is needed to be increased.

5.2.2 Object detection task:
This dataset has 100,000 images with the 10 labels: Train, Motor, Rider, Bike, Bus, Truck, Person, Light,
Sign and Car. The following chart shows how many times each label appears in the whole dataset:

BDD100k has a lot of car instances in comparison with other labels. This lack of uniformity in the dataset
became a problem to train the detection models and it was one of the issues that the solution designer
focused. The main issue was that the detection models were overfitted of car instances and could not
recognize properly the other labels. Different solutions were created and will be explained in this
reference guide later.

5.3 Preliminary training of contender models:
The goal of PoC phase is not improving performance, rather it is to check if available data can be directly
used in the contender models. The training procedure and the trained model performances are
summarized below:

5.3.1 Preprocessing steps:
 Images are auto resized to fit by corresponding networks, no resizing was done
 Bounding box(bb) annotations for BDD100k were originally in the following format: x and y co-

ordinates of the top left and x and y co-ordinates of the bottom right edge of the rectangle.
This format was changed to COCO bb annotation format: (x-top left, y-top left, width, height)

Label Training Validation
train 136 15
motor 3002 452
rider 4517 649
bike 7210 1007
bus 11672 1597
truck 29971 4245
person 91349 13262
traffic
light 186117 26885
traffic
sign 239686 34908
car 713211 102506

1

10

100

1000

10000

100000

1000000

Training Validation

Figure 2: Amount of instances that each label appear in BDD100k dataset

5.3.2 Hyper-parameter specifications:
Tuned hyperparameters of each model are presented below:

Model No. of iterations Learning rate Batch size
YOLOv3 160,000 0.001 8
YOLOv3 + ASFF 7,000,000 0.001 16
YOLOv4 40,000 0.001 32
YOLOv5 980,000 0.01 16
Faster R-CNN 115,000 0.00025 8
M2Det 700,000 variable 1
EfficientDet-D2 300,000 0.079 18
MobileNetv1 120,000 0.01 16
MobileNetv2 130,000 0.01 16

Table 3: Training configurations for object detection models using BDD100k

5.3.3 Validation results:
Following results were obtained from the trained models evaluated on the validation dataset with 10k
examples:

Model mAP@0.5 FPS
YOLOv3 45.7 31.25
YOLOv3 + ASFF 56.55 63.69
YOLOv4 62.3 16.07
YOLOv5 62.9 29.06
Faster R-CNN 59.3 14.58
M2Det 7.2 13.7
EfficientDet-D2 41.2 19
MobileNetv1 79.6 5.3
MobileNetv2 84.5 4.5

Table 4: Accuracy measurement of contender object detection models in PoC phase

5.3.4 Additional information:
All the models used in PoC phase are open sourced with established architectures. Since no changes were
made to the original architectures, details of each network such as number of layers and neurons,
activation functions etc. are not documented in this report for this phase. Following are the pre-trained
weights that were used for each model:

Model Weights (URL)

YOLOv3 https://pjreddie.com/media/files/darknet53.conv.74

YOLOv3 + ASFF Randomized weights

YOLOv4 https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/y
olov4.conv.137

https://pjreddie.com/media/files/darknet53.conv.74
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137

YOLOv5 https://github.com/ultralytics/yolov5/releases/download/v3.0/yolov5x.pt

Faster R-CNN https://dl.fbaipublicfiles.com/detectron2/COCO-
Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl

M2Det https://drive.google.com/file/d/1NM1UDdZnwHwiNDxhcP-nndaWj24m-90L/view

EfficientDet-D2 http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_
d2_coco17_tpu-32.tar.gz

MobileNetv1 https://1drv.ms/u/s!AvkGtmrlCEhDhy1YqWPGTMl1ybee

MobileNetv2 https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz

Table 5: Pretrained weights used for models

5.4 Insights from PoC phase:
PoC phase can give directions about steps to be taken to begin the development phase of the product.
Some insights acquired in the PoC phase are discussed below:

1. Necessity of creating well-defined problem domain: Noteworthy differences are observed in
available dataset domain in section 5.1 compared to anticipated/expected domain specifications
mentioned in section 4.1. These differences reveal that the existing attributes are not adequate
for the domain to be referred as a complete problem domain with all possible combinations that
may occur in real life scenarios. The necessity of creating a well-defined problem domain is noted.

2. Effective balancing between adequate coverage and unbiased distribution: Records from 5.2
reveals the distribution of samples is imbalanced because the dataset has some attribute values
with very few examples compared to other attribute values in corresponding attribute (i.e foggy
in weather, gas station in scene, train in objects etc). So, while re-defining the problem domain,
necessity of merging or deleting attributes and attribute values should be kept in my mind. Also,
the data in the newly defined domain should be distributed in a way that the practical/real life
distribution of the data is not hampered. But if some problem cases are found to be very
important and critical for the ML models in terms of safety, then adequacy of data in those
problem cases must be evaluated and adjusted. So, an effective balance between unbiased
dataset distribution and enough examples in safety-critical cases should be exercised.

3. Necessity of specifying special cases: The above-mentioned observation also gives rise to the
necessity of proper identification of problem cases with distinctive importance. Such as, there
may be some combinations of attribute values that can never occur in real life scenarios (i.e snow
in summer). These scenarios should be considered as ‘impossible case’. Also, there may be some
combinations of attribute values that have very few examples in dataset because they occur rarely
in real life but carries significance importance in terms of safety, such as pedestrian on road with
green traffic signal. These should be identified as ‘safety-critical’ scenarios or ‘rare cases’.

https://github.com/ultralytics/yolov5/releases/download/v3.0/yolov5x.pt
https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl
https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl
https://drive.google.com/file/d/1NM1UDdZnwHwiNDxhcP-nndaWj24m-90L/view
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d2_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d2_coco17_tpu-32.tar.gz
https://1drv.ms/u/s!AvkGtmrlCEhDhy1YqWPGTMl1ybee
https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz

Distribution analysis must be done to expose these cases so that cautious decisions can be taken
about their inclusion in training dataset and expected level of performance for the trained models.

4. Directions for development stage: Records from 5.3 can give insights for next stage of product
development such as deciding which models to choose for further improvement, threshold values
to be set for KPIs etc. But it also lacks records of models’ performance in specific cases mentioned
above. So, while evaluating model’s performance in the next stage of development, KPI scores for
the safety-critical cases must also be recorded to ensure if the model achieves required level of
correctness and stability overall as well as in specific cases.

6. Designing development phase:
6.1 Incorporation of MLQM guideline:
From the preliminary analysis and insights gained based on the results in PoC phase, it is evident that
following steps are required to be executed in the next phase:

- Creating a well-defined problem domain based on the requirements of the AI product
- Maintaining completeness of the problem domain while using available data in hand
- Designing training and test dataset with enough examples in possible scenarios while maintaining

unbiased property of distribution as much as possible
- Identification of specific scenarios like rare cases, impossible cases and specific distribution

analysis of those cases
- Overall performance analysis of trained models as well as evaluation of model performance in

safety-critical scenarios

To properly fulfill the above requirements, Machine Learning Quality Management (MLQM) guideline
(written by Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and
Technology) will be used in this report. The protocols established in the guideline give detail instructions
on how to achieve these requirements by setting eight aspects of ‘internal quality’ as means of quality
management. Hence, it is expected that ensuring these eight aspects of ‘internal quality’ (discussed in
MLQM guideline section 1.7 and section 6) in the next stages of development will consequently create
the best version of the AI product in terms of required quality, safety , performance and fairness.

6.2 Adjustment of standards of quality management:
In the next stage, AISL (AI Safety Levels, introduced in section 3.1) from MLQM guideline will be used to
assess safety and quality levels extensively. However, in the product specification section (4.2) of the
report, ASIL (Automotive Safety Integrity Level- risk classification scheme defined by the ISO 26262 -
Functional Safety for Road Vehicles standard) is used initially to declare safety requirements. An
assumption is made that the requirement provided by the Development entruster is ASIL D (a combination
of S3, E4, and C3 classifications in terms of Severity, Exposure and Controllability). So, it is necessary to
demonstrate that the safety requirements demanded by the Development entruster are fulfilled properly
even though protocols provided by MLQM were followed.

In this intermediate stage while shifting from ASIL to AISL, it should be stated which category of ASIL (QM,
A, B, C and D; ISO 26262) corresponds to which category of AISL((AISL 4, AISL 3, AISL 2, AISL 1, AISL 0.2,

https://en.wikipedia.org/wiki/ISO_26262

AISL 0.1, AISL 0). For this report, AISL 0.1 will be considered as the required level of safety for all the
internal qualities. In addition to these, AIPL (AI performance level) and AIFL (AI fairness level) are chosen
to be AIPL1 and AIFL1 respectively.

7. Internal quality evaluation using MLQM guideline
As discussed in section 6, eight aspects of the internal quality will be evaluated simultaneously throughout
the agile development process of AI model generation.

7.1 Sufficiency of requirement analysis:
After initial investigation of the current dataset and insights gained from PoC phase, first characteristics
axes of quality management, ‘sufficiency of requirement analysis’ , will be analyzed in response to the
achievement of two external qualities - risk avoidance and AI performance, as mentioned in the MLQM
guideline.

7.1.1 Definition of ‘Sufficiency of requirement analysis’:
According to the guideline, the term ‘sufficiency of requirements analysis’ means that sufficient
requirements analyses are made concerning the situations where machine learning based systems are
used in real world and their analysis results cover all possible situations, mentioned in section 6.1.1.

So, here we analyze the requirements in specific linguistic terms in as much detail as possible. This involves
clearly defining the problem domain of the autonomous driving scenario that we are expecting to
encounter in real life and wish to solve by using our supervised machine learning models.

7.1.2 Redefining problem domain:
Inspired from the guideline that envisions a concept of feature tree, the problem domain is defined with
the following ‘attributes’ and their corresponding ‘attribute values’. The term used here as ‘attribute’ and
‘attribute values’ carries the same meaning and significance as defined in section 6.1.2.1 of the guideline.

Some requirements are declared to fulfill before designing the problem domain. The requirements are:

 Data for all possible classes and objects: Requirements for a machine learning solution
means the expected performance of the solution in real world scenario. In this case, while
designing the domain it must include all the classes and objects that are necessary for the
final product. Differences found between the proposed domain and the existing dataset,
should be handled in later stages of the quality evaluation procedure. Specifications
provided by user/development entruster, such as, all possible classes/object types), should
be considered here.

 Selecting well-defined feature dimensions: The attributes and their corresponding
attribute values should cover any possible data specific scenario needs to be considered
and listed for later analysis like coverage or sufficiency. While deciding the final set of
attributes based on the proposed domain and the PoC phase results, we will consider
discussing the scopes of attributes and their values that have been considered; what
scenarios each attribute value covers.

 Selecting in-bound and out of bound areas: The acceptance of variations in the selected
features that are to be considered in our problem domain should be declared specifically.
User requirements should be prioritized here. Further specifications provided/considered
while designing the problem domain, especially if some scenarios are intentionally left

behind the scope of the model should be reviewed in sufficiency of requirement analysis
phase.

7.1.3 Proposed problem domain:
Next, we present the problem domain with a newly defined set of attributes to cover all perspectives of
the target domain in as much details as possible. The major goal of creating an ideal problem domain is
to cover all possible scenarios that an autonomous vehicle may face in real life and concerns the solution
designer significantly.

The following table shows the attributes and the corresponding values used to correctly identify such
cases that the ML model may face considering the initial product specifications and the solution desiner’s
concerns.

Table 6: Problem domain specifications

Here, under FO refers to images where the vehicle is under a flyover/bridge. PL/GS refers to Parking
lot/Gas station.

Due to the numeric property of the attribute ‘Perceived brightness’, additional explanation of definition
and calculation of this property is needed.

Calculation of luminance/perceived brightness: Luminance is a photometric measure of the luminous
intensity per unit area of light travelling in a given direction. Brightness is the term for the subjective
impression of the objective luminance measurement standard. A luminosity function or luminous
efficiency function describes the average spectral sensitivity of human visual perception of brightness.

So, calculating the relative luminance of the images using the following formula is considered the most
standard way of calculating perceived image brightness from pixel values: -

𝐴𝐴 = 0.2126𝑅𝑅 + 0.7152𝐺𝐺 + 0.0722𝐵𝐵

• R,G,B is the mean value of 3 channels (resolution: 720*1280)

• The range of brightness values is from 0 to 255, 0 being complete black and 255 being complete
white.

7.1.4 Example of training data described using the proposed domain:
The following example shows how each datapoint in the dataset can be described using the new attributes
and their values.

Figure 3: Example datapoint described by the new problem domain

The name of the image is from the original BDD100k dataset. The axes of the image show the original pixel
size (1280x720) and attribute values describe a specific autonomous driving scenario encountered by the
vehicle. This is pixel size for all the RGB images in the dataset.

7.1.5 Comparison of existing domain with proposed domain
A comparison of existing problem domain of BDD100k and proposed problem domain are given below to
observe their differences and to check if redesigning the dataset is necessary.

Table 7: Comparison of problem domain of BDD100k and proposed problem domain

7.1.6 Approaches considered to adopt existing dataset with proposed domain
 “Road Type”, “Weather” and “Time of Day”: both annotations used almost same terminology.

Following merging/deletion of some attribute values can be done, so that the existing annotations
of BDD100k can be easily adopted to the new domain.

− ’City street’ and ‘Residential’ can be merged as ‘General way’ in ‘Road type’
− ‘Overcast’ & ‘Partly cloudy’ can be merged as ‘Cloudy’ in ‘Weather’. The level of

cloudiness in the sky is left to be implicitly learned by the ML program.
− ‘Heat haze’ will be deleted since the BDD100k does not contain this attribute. The

possibility of occurring this situation is very low and the solution designer decides to
exclude this from the domain.

− No change is needed to be made in ‘Time of day’.

 “Zebra Crossing”: it has been checked if the BDD100k image annotation has a “Crosswalk”
label/description, but it was not present in BDD100k dataset. However, BDD100k has a
description per ‘Lane marking’ containing ‘crosswalk’. So, following changes can be done using
simple python scripts to extract from ‘Lane marking’ description the information necessary to
adapt the BDD100k dataset for the proposed domain.

− If there is not a “crosswalk”, then attribute value is assigned as “no”.
− If there is a “crosswalk”, then attribute value is assigned as “yes”.

 “Signal”: there is a similar situation as with “zebra crossing” attribute. The “signal” attribute is a

description inside ‘traffic light’ label annotated in BDD100k. As consequence, if there is a traffic
light, BDD100k attach the attribute of the traffic light color. Again, the dataset can be adopted
using simple python scripts that extract the attribute if there is a ‘traffic light’ in the image. If
multiple ‘traffic light’ instances are in the image, multiple “signal” attributes are stored, one per
instance.

 BDD100k does not have labels for brightness values. Annotating the whole dataset for “perceived
brightness” is easy, because of its numeric nature. So, perceived brightness for all the images in
the dataset is calculated using a python script. Later, to reduce ambiguity while testing, the range
of brightness values (0-255) is divided into 5 equal sections: Very Low [0-51], Low[51-102],
Moderate[102-153], High [153-204] and Very High [204-255].

 “Pedestrian”, “Road Condition” and “Obstacle”: in BDD100k, it is only possible to check if there
are pedestrians in the image or not, not their position. But, according to the solution designer,
the position of the pedestrian is a very important feature and should not be ignored. Because it is
very risky if there is a pedestrian ‘on road’ when the signal of the traffic light is ‘green’. But it is
very normal for a pedestrian to be in the ‘sidewalk’ when the signal is ‘green’.

There is no easy way to extract this additional information from BDD100k dataset. Similarly, with
the current features of BDD100k, “Road Condition” and “Obstacle” labels are also not available.
So, one way to resolve this issue is to make manually all the missing annotations.

7.1.7 Re-designing dataset:
Based on the discussions made on section 7.1.5 and 7.1.6, the following domain is obtained from BDD100k
for the AI model to be used in training and validation steps.

Road
Type

Time of Day Weather Pedestrian Traffic
Light

Zebra
Crossing

Brightness

General
way

dawn/dusk clear True Green True Very high

highway daytime Cloudy False Yellow False High

parking
lot

night rainy

 Red

Moderate

tunnel undefined snowy

 None

Low

Under FO

undefined

Very low

undefined

Table 8: Final problem domain considered in this application

Since BDD100k dataset have labels for all the images for the above-mentioned attributes (except
brightness), this domain can be easily used in both training and validation of classification and object
detection models.

So, instead of 3 different tasks to be learned for classification models, this new domain allows the solution
designer to create 6 classification models performing 6 different tasks.

The ‘brightness’ attribute will be used to evaluate the performance of both classification and object
detection models in various brightness levels. These evaluations will demonstrate the model’s robustness
to brightness fluctuations.

The labels for position of the ‘Pedestrians’ are missing in the existing dataset but carries great significance.
“Road Condition” and “Obstacle” labels are also not available. But manual annotation of 100k images (as
shown in 7.1.4) will be very time-consuming and require tremendous amount of manpower. So, instead
of annotating 100k images, random 10k images from the validation set are annotated using a custom
annotation tool. These annotation labels can also be used to evaluate how the object detection models
perform in specific problem cases. Nevertheless, the “Road Condition”, “Obstacle” and “Pedestrians”
information from the remaining 90k images will be made in the future.

7.2 Coverage for distinguished problem cases:
7.2.1 Definition of ‘coverage of distinguished problem cases:
MLQM guideline recommends to identify various possible combinations of the attribute values presented
in the requirement analysis phase. Examining the number and details of these combinations of attribute
values is the primary theme of evaluating coverage for distinguished problem cases.

MLQM guideline discusses this attribute in section 1.7.2 and in section 6.2. Adequate examinations of
data design to collect and sort out sufficient training data and test data are required in this phase in
response to various situations which systems may need to respond to.

7.2.2 Steps required for evaluation:
In an ideal scenario, a solution engineer should examine there is enough data for all possible combinations
of attribute values. But for a high-dimensional problem domain, it is nearly impossible to give equal
importance to each combination. Consequently, to keep a balance between ease of evaluation and
preferred level of quality management, a solution designer may perform the following steps:

 Assess the total number of combinations possible for all attributes and their corresponding values.
Assess possible combinations of attribute values taking suitable number of attributes in a group:

o If the number is not high, presence of enough data for each possible combination should
be checked.

o If the number is very high, combinations that carry the most importance and covers most
of the dataset should be evaluated first.

 Set cases using combinations of attributes and their values to sort out cases with most importance
and cases that can be ignored.

7.2.3 Example of evaluation process:
The following example is used for demonstration of the evaluation process. For the purpose of avoiding
complexity, a similarly distributed but smaller dataset with ~2k annotated examples (from BDD100k
training set) is used. If proper labels for all the images in the dataset can be found, then this evaluation
should be done on the whole dataset. Let’s consider the following attributes and their corresponding
values to assess the complexity of the situation.

7.2.3.1 Considered domain details:
Total Attributes: 7; Total attribute values: 34

Lighting: High, Low, Normal (3)

Road type: General way, Highway, Parking lot/gas station, Tunnel, Undefined (5)

Road condition: Dry, Snowy, wet, Undefined (4)

Signal: Green, Red, Yellow, None, Not sure, Undefined (6)

Pedestrian: On road, on sidewalk, None, Not sure, Undefined (5)

Obstacle: Vehicle, Others, None, Not sure, Undefined (5)

Weather: Fine, Cloudy, Rainy, Snowy, Foggy, Undefined (6)

7.2.3.2 Summary of assessment result:
Following are the results obtained by doing a quantitative analysis on a smaller but similarly distributed
dataset with 2000 examples:

 Total possible combinations taking one attribute = Total attribute values = 34
 Total possible combinations taking all 7 attributes and all values = 54,000
 Since the number of total combinations is far too large to investigate, let’s consider attribute

combinations taking 2 attributes per group from 7 attributes.
 Total number of groups to check combinations: 21
 Total number of combinations: 542

An example of presence of data for one combination ’Lighting + Signal’ among these 542 number of
combinations is presented below:

Lighting Signal Count Percentage

High Green 25 1.23

High None 70 3.44

High Not sure 7 0.34

High Red 4 0.20

Low Green 345 16.94

Low None 375 18.42

Low Not sure 41 02.01

Low Red 77 03.78

Low Undefined 1 00.05

Low Yellow 11 00.54

Normal Green 326 16.01

Normal None 626 30.75

Normal Not sure 41 02.01

Normal Red 78 03.83

Normal Undefined 1 00.05

Normal Yellow 8 00.39

High Yellow 0 0

High Undefined 0 0

Table 9: Presence of data for combination ’Lighting + Signal’ across combined attribute values

 Data distribution in the above-mentioned combinations are also presented in the following graph:

Figure 4: Distribution of data for possible case in combination ‘Lighting + Signal’

It can be very time-consuming and exhaustive process for a solution designer to check the results of this
kind of analysis for ensuring the presence of enough data in possible combinations separately in this type
of pair-wise analysis. So, in the next step, instead of doing pair wise analysis, it can be considered to
calculate distribution for possible combinations taking all 7 attributes and all values(~54k). Since python
scripts can be written to calculate this distribution, the process will be automatic.

7.2.4 Identifying special cases:
The solution designer can also check completeness with a rough granularity level by setting out some specific
cases with high significance and later investigating the presence of data in only those cases. Carefully choosing
these significant cases can allow the solution designer to check the coverage of a large portion of the dataset.

The cases that requires special attention are considered significant cases. For example, there can be some
combinations of attribute values that may never occur in real life but somehow present in the dataset. The
solution designer may choose to exclude the examples of such kind. Also, for some cases, the performance of
AI models may degrade in operation. So, presence of enough data for such risky cases must also be thoroughly
checked to avoid accidents.

In this section, it is explicitly identify the unsound cases (not possible in real world scenarios) in the
problem domain and risky cases (cases where higher level of safety should be maintained due to
possibility of performance degradation of models).

7.2.4.1 Unsound cases:
Unsound cases should be identified by the solution designer beforehand so that they can be excluded
from training. To describe these cases, some values for a certain attribute (mentioned as ‘Primary
Conditional Attribute’) are set and then they are paired with values of other attributes to check if the
created combination can exist in real life. Following are such combinations observed by the solution
designer. Since these combinations must not happen in real life (for this specific application and problem
domain), presence of examples from these combinations should be checked and excluded.

Case Primary
Condition
Attribute

Primary
Conditional
Value

Secondary
Conditional
Attribute

Secondary
Conditional
Value

0 Weather Snowy Road condition Dry
1 Weather Rainy Road condition Dry
2 Road type Highway Signal Green
3 Road type Highway Signal Red
4 Road type Highway Signal Yellow
5 Road type Highway Zebra crossing Yes
6 Road type Highway Pedestrian On road
7 Road type Highway Pedestrian On sidewalk

Table 10: Unsound cases that are not expected to be present in data

7.2.4.2 Safety critical cases/Risky cases:
Following are some risky cases identified by the solution designer. These cases are considered risky
because in model performance may degrade in these scenarios and wrong decisions made by the AI
models in these scenarios can lead to hazardous situations.

#Combinations taking 2 attributes in one group:

1. Road type: Highway + Weather: rainy
2. Road type: Highway + Time: Night
3. Weather: Rainy+ Time: Night
4. Road type: General way + Weather: Rainy
5. Road type: General way + Pedestrian: On road
6. Road type: General way + Time: Night
7. Weather: Rainy + Pedestrian: On road
8. Weather: Rainy + Time: Night
9. Pedestrian: On road + Time: Night

#Combinations taking 3 attributes in one group:

1. Road type: General way + Weather: Rainy + Pedestrian: On road
2. Road type: General way + Weather: Rainy + Time: Night
3. Road type: General way + Pedestrian: On road + Time: Night
4. Weather: Rainy + Pedestrian: On road + Time: Night

After calculating the distribution, the solution designer should set a standard of coverage or a ‘threshold
value’. This threshold, if set after proper observation, can easily reduce the number of combinations ‘with
enough data’ to a manageable value. This evaluation can also give the solution designer an estimate about
if the number of data present in combinations with greater importance (i.e. risky cases) are enough or not.
In the next stage of development, based on the comparison between the threshold values and the actual
values, decisions need to be made about the following issues:

o If there is any combination that needs more data by augmentation or data duplication or
other methods

o If there is any combination that should be ignored completely
o Actions to be taken for combinations with no data

7.3 Coverage of dataset
7.3.1 Definition of ‘Coverage of dataset’:
In the MLQM guideline, a property is defined as “coverage of datasets” where enough data (especially,
test data) is given to each “combination of situations that require response” designed in the previous
paragraph without any missing situation.

The purpose of configurating this axis of characteristic is to guarantee that the shortage of learning due
to the shortage of data or any oversight of learning in specific conditions due to biased data does not
occur in any situation or case identified in requirement analysis or data design.

7.3.2 Steps required for evaluation:
Following approaches can be taken to ensure if enough amount of good data with unbiased distribution
is available for each important scenario, specially the cases identified in section 7.2.4.

 Quantify number of data points present in each group:
 In each group:

o Assess number of combinations with datapoints more than threshold
o Assess number of combinations with datapoints significantly less than threshold
o Assess number of combinations with no data

From above quantities, re-evaluation of threshold values previously defined for data coverage can be
done if needed and features can be omitted if necessary.

7.3.3 Example evaluation process:
As discussed earlier, in the next step of original development process of an AI product, instead of doing
pair wise analysis, it can be considered to calculate distribution for possible combinations taking all 7
attributes and all values(~54k). The following analysis should be done on specially test/validation dataset.
But for now, let’s continue the evaluation of coverage of dataset for specific scenarios on the same dataset
used in 7.2.3.2. Following are the results obtained after investigating the coverage for various scenarios
mentioned in previous section:

7.3.3.1 Presence of data in unsound cases:
Following is the presence of data in unsound cases:

Case Primary
Condition
Attribute

Primary
Conditional

Value

Secondary
Conditional

Attribute

Secondary
Conditional

Value

Percentage in
the Dataset

0 Weather Snowy Road condition Dry 0
1 Weather Rainy Road condition Dry 0.098
2 Road type Highway Signal Green 1.031
3 Road type Highway Signal Red 0.295
4 Road type Highway Signal Yellow 0.049
5 Road type Highway Zebra crossing Yes 0.344
6 Road type Highway Pedestrian On road 0.098
7 Road type Highway Pedestrian On sidewalk 0

Table 11: Data coverage in unsound cases

As mentioned earlier, the training data should not contain such unsound cases. The inclusion of this kind
of data may happen due to different reason, such as, errors in annotation, mislabeling, etc. The solution
designer can exclude these examples for the dataset. If the number of data is very low in such cases,
additional investigation can be done (considering reasonably minimum effort) to check the source of error
and if possible, the labels can be corrected.

7.3.3.2 Presence of data in risky cases:
Results of data coverage are summarized below for high risk cases mentioned in 7.2.4.2.

Group 1: Combinations taking 2 attributes in one group:

1. Road type: Highway + Weather: rainy
2. Road type: Highway + Time: Night
3. Weather: Rainy+ Time: Night

Figure 5: data coverage across some high risk cases

Group 2: More combinations taking 2 attributes in one group

1. Road type: General way + Weather: Rainy
2. Road type: General way + Pedestrian: On road
3. Road type: General way + Time: Night
4. Weather: Rainy + Pedestrian: On road
5. Weather: Rainy + Time: Night
6. Pedestrian: On road + Time: Night

Figure 6: data coverage across some high risk cases

Group 3: Combinations taking 3 attributes in one group

1. Road type: General way + Weather: Rainy + Pedestrian: On road
2. Road type: General way + Weather: Rainy + Time: Night
3. Road type: General way + Pedestrian: On road + Time: Night
4. Weather: Rainy + Pedestrian: On road + Time: Night

Figure 7: data coverage across some high-risk cases

7.3.4 Insights from recorded results:
It is observed from the results of coverage analysis that some combinations have significantly less
examples than others. While this kind of distribution is expected in real situations, the model performance
in these specific scenarios may suffer due to shortage of data. Setting specific thresholds for these cases
can help in sorting of cases that will need additional data to increase the coverage of these rare cases. For
this research, the threshold has been set to 100 images.

It is necessary to have rare inputs in the dataset in an appropriate amount so that model performance
does not degrade in those specific cases. From results presented in 7.3.3, rare images are identified that
do not occur in the dataset that often but extremely important for autonomous driving scenarios. Since it
is needed to take acceptable number of images into the training and more examples from the rare case
scenarios are needed, ways to provide these inputs in good amount should be analyzed by solution
designer. One way can be using data augmentation processes to generate such corner cases. In fact, with
adapting proper augmentation technique, adversarial examples can also be generated to check the
robustness and stability of trained models.

For BDD100k dataset, another way is to extract more examples of similar scenarios from BDD video
dataset by sampling more frames from the desired clips. The images from BDD100k dataset are all of them
obtained from BDD videos. Additionally, each image in BDD100k has an ID pointing which video was used
in the BDD video dataset. As consequence, it is possible to find more images related to an image of

BDD100k if the video of that image is found. All the video frames of BDD video dataset are labeled and
can be extracted with a python script.

For example, if the solution designer wants to include some unclear images due to water on the
windshield to make the trained models robust to noises, then some images from the same video can be
used but with different timestamp. But from data coverage investigation, it is found that such cases rarely
happen. So, first an unclear image due to water on the windshield is identified in the video dataset. Next,
two frames are extracted: from 1 second before and after the original sampled image. These three images
will have the same disturbances with different road position. The video dataset has all object labeled using
the same annotation as BDD100k, as consequence, the extracted images can be included in the dataset
for training or validation. In this way, the amount of images of the combinations that have low available
images can be increased.

(a) 1 second before (b) Original (c) 1 second after

 Figure 8: consecutive frames of ‘02701fba-809c39f3.mov’ from BDD video dataset.

7.4 Uniformity of dataset
7.4.1 Definition of ‘Uniformity of dataset’
MLQM guideline tells us that ‘Uniformity of dataset’ is a concept contrary to ‘coverage’ mentioned in
previous section. Evaluating ‘uniformity’ of a dataset involves investigation of the original distribution of
dataset and inspecting if there is any bias present in the data. When each situation or case in datasets is
extracted in accordance with the frequency of its occurrence in whole data to be input, data is considered
as “uniform”. Here the primary concern is to evaluate the balance between ‘coverage’ and ‘uniformity’.
MLQM guideline states that it is necessary to consider to which one receives priority, coverage or overall
uniformity, and how to strike a balance between them.

7.4.2 Steps required for evaluation
The priority mentioned in 7.4.1 will have a significant effect on the models’ performance. Depending on
the given requirements, the solution designer may choose to:

• Give priority to overall performance of the models. Here, if there is such a case that occurs
very rarely in the dataset, then due to shortage of enough data, the ML model may fail to
learn that case properly.

• Give priority to performance of the models for specific cases with greater significance, even
if there are not enough data present for that case. To achieve this goal, the solution designer
would be biased to the specific case and would try to include more data from this case
ignoring the natural frequency of occurrence for that case. As a result, specific performance
may improve, but overall performance may deteriorate.

Considering the above scenarios,

• the solution designer should evaluate the natural frequency of occurrence, the distribution of
the dataset, and check if the steps taken to improve coverage of the specific cases introduce
bias in the dataset.

• If significant bias is found, an expected distribution of the dataset can be calculated
considering a smaller portion of the data or considering data from other similar sources. Then,
a comparison should be made on the expected distribution and the biased distribution.

• The solution designer can set a level of allowance for the fluctuation of distribution for the
problem cases depending on the requirement and priority level discussed before.

7.4.3 Example evaluation process
We will consider a simple portion of the data to demonstrate evaluation procedure of uniformity analysis.
In real case of product development, the distribution should be measured across the whole training and
validation dataset and the frequency of occurrences for cases that can be compared with another dataset
coming from a separate source. Say, for this research, the following attributes describes the problem
domain with around ~2k data in the dataset:

• Obstacle: None, Vehicles, Other, Not sure, Undefined
• pedestrians: None, Not sure, On sidewalk, On road, Undefined
• Road type: General way, Highway, Under bridge, gas station Undefined, Tunnel
• Lighting: High, Normal, Low

7.4.3.1 Evaluating general distribution of dataset
First let’s evaluate the general distribution of data across attribute values for different attributes. The
following graphs shows the distribution of data for ‘Lighting’ attribute across attribute values.

Figure 9: Distribution of data across attribute values of attribute ‘Lighting’

The following graph shows the distribution of data for ‘Road type’ attribute across attribute values.

Figure 10: Distribution of data across attribute values of attribute ‘Road type’

Let’s assume, the solution designer has a different but similarly distributed dataset from another source
with around ~6k data in dataset. We can consider the distribution of this secondary dataset as a reference
or an expected distribution to acquire a comparison.

Attribute
Value

(Lighting)

Original
dataset

distribution

Secondary
dataset

distribution

Difference
in

percentage
Normal 53.05 62.15 -9.1
Low 41.75 35.07 6.68
High 05.21 02.75 2.46

Table 12: Comparison of frequency of occurrence for attribute values of ‘Lighting’

Attribute
value

Original
dataset

distribution

Secondary
dataset

distribution

Difference in
percentage

General way 83.55 81.84 01.71

Highway 11.44 13.45 02.01

Under
bridge/Flyover

03.05 02.9 00.15

Parking lot/Gas
station

00.93 00.84 00.09

Undefined 00.83 00.72 00.11

Tunnel 00.2 00.26 -00.06

Table 13: Comparison of frequency of occurrence for attribute values of ‘Road type’

Depending on the differences observed, the solution designer can next set threshold values for allowed
fluctuations. Later, if any biasness is found for any attribute values due to data augmentation or other
data distribution manipulation, the solution designer can check if the biasness is within the allowed
fluctuation.

7.4.3.2 Evaluating distribution of data across combined cases
Similar comparison should be made taking various combinations of attributes, especially including the
cases with special significance like risky cases. The possibility of risky cases being rare in the dataset leads
to the solution designer’s decision of creating a biased dataset. So, to strike a balance between uniformity
and coverage, detail investigation like the above one should be done for the specific combinations with
higher importance. A similar analysis on combination attribute for ‘lighting + road type’ is given below:

Figure 11: Distribution of data across combinations of attribute values of Road type+ Lighting

A similar comparison can be done on differences in expected vs actual distribution:

Road type Lighting
Original
dataset

distribution

Secondary
dataset

distribution

Difference
in

percentage
General way High 3.88 2.05 1.83
General way Low 35.9 29.08 6.82
General way Normal 43.76 50.72 6.96
Highway High 1.33 0.7 0.63
Highway Low 3.78 4.45 0.67
Highway Normal 6.34 8.28 1.94
Parking
lot/Gas station Low 0.15 0.12 0.03

Parking
lot/Gas station Normal 0.79 0.72 0.07

Tunnel Low 0.1 0.09 0.01

Tunnel Normal 0.1 0.17 -0.07
Undefined Low 0.83 0.58 0.25
Under
bridge/FO Low 0.98 0.75 0.23

Under
bridge/FO Normal 2.06 2.15 0.09

Under
bridge/FO High 0 0 0

Parking
lot/Gas station High 0 0 0

Undefined Normal 0 0.12 0.12
Undefined High 0 0 0
Tunnel High 0 0 0

Table 14: Comparison of frequency of occurrence for combined attribute values

It should be noted that with availability of actual data form operation environment and adequate time,
these evaluation procedures should be executed on original datasets that will be used for training and
validation of the final AI product. This can be considered as future work in next versions of reference
reports. This version of the report does not include detail experiment or exact evaluation procedures in
most cases. Rather it discusses how the evaluation process and model development process can be carried
out for object detection task. In next version of the report, more detailed experiments and evaluation
procedures are expected to be included. Also, similar results for the classification task are expected to be
produced as well. More structured ways of recording PoC results, evaluation results and model
performance are expected to be used in each step of the agile development process in future.

7.5 Correctness of the trained model
7.5.1 Definition of ‘Correctness of the trained model’
The term “correctness of a trained model” represents that a machine learning component functions as
intended upon the input from the learning dataset (consisting of training data, validation data, and test
data). In MLQM guideline, this notion also includes the convergence of the training and the quality of
training data (e.g., the dataset has only a small number of outliers and incorrectly labeled data).

7.5.2 Decisions from PoC phase:
Using the results shown in section 5.3.3, it has been decided to only continue researching with the models
that achieve 50% or more mAP, and can work with real time images (meaning FPS is bigger than 15). The
reason is that if a model has less than 50% mAP, the solution designer needed to expend a lot of time to
improve them in comparison to improve a model with more than 50% of mAP. As consequence, the
solution designer focused on the best models trying to improve the accuracy of those ones. Regarding the
FPS, it is possible to improve the FPS of the models, however, improving the FPS decreases accuracy, as
far as we know. As consequence, we have decided to focus only on improving accuracy and leave the
improvement and study of FPS for future work. As consequence, Yolov3, M2Det, EfficientDet-D2,
MobileNetv1 and MobileNetv2 are removed from the research because they cannot achieve the minimum
mAP and/or their FPS is too low. The remaining models (Yolov3+ASFF, Yolov4, Yolov5, Faster R-CNN) were
the objective of this research to improve their accuracy to achieve enough mAP to accomplish SADL D.

7.5.3 Evaluation procedure for correctness of object detection models
Through the research, it has been developed different approaches to improve the accuracy.

7.5.3.1 Removing noise information in the dataset
The below image shows how some bounding boxes overlap making difficult the training process. This issue
brings noise to the training process of each detection model reducing the accuracy obtained.

Figure 12: Image example of overlapping bounding boxes

After checking with Toyota and their necessities, the best solution to increase the accuracy was to reduce
the amount of boxes and make the detection models learn about objects that are close to the car. As a
result, it has been tested different approaches trying to remove the overlapping bounding boxes. The
name of this process is called Reducing Boxes.

Due to it is impossible to know the whole time the distance of an object from a single image, it has been
created 6 different measures to remove the bounding boxes. The idea is if a bounding box fits inside the
created artificial window, then that bounding box is removed from the training dataset. After all images
have been checked and all the bounding boxes that fit inside the artificial window has been removed,
then a new dataset without the problematic bounding boxes is created and it is used to re-train the
detection model. The 6 different measures of the artificial windows are:

• 0: All objects are used
• 10: objects inside 10x10 pixels are not used for prediction or validation
• 20: objects inside 20x20 pixels are not used for prediction or validation
• 30: objects inside 30x30 pixels are not used for prediction or validation
• 40: objects inside 40x40 pixels are not used for prediction or validation
• 50: objects inside 50x50 pixels are not used for prediction or validation

Model Whole
dataset

Removed
10x10

Removed
20x20

Removed
30x30

Removed
40x40

Removed
50x50

YOLOv3
+ ASFF 56.55 58.43 63.13 65.11 53.00 40.74

YOLOv4 62.3 64.17 69.70 72.93 58.78 45.15
YOLOv5 62.9 64.57 70.62 73.68 59.87 45.43
Faster R-
CNN 59.3 60.66 66.14 70.41 54.58 41.08

Table 15: mAP comparison after reducing boxes mechanism

As a result, the table before shows the results of removing the bounding boxes and re-training each
detection model selected. As a result, there is a mAP increment when removing bounding boxes smaller
of 10x10, 20x20 and 30x30 about 1.7%, 7.1% and 10.2%, respectively. However, if the bounding boxes
smaller than 40x40 and 50x50 are removed, the mAP percentage decrease about 3.7% and 17.1%,
respectively. With this result, it is demonstrated that there are bounding boxes that bring noise to the
detection models training process. This mechanism can be used with other dataset in order to detect
overlapping annotations and check if the mAP increases.

Yolov4 mAP(%) Whole
dataset

Removed
10x10

Removed
20x20

Removed
30x30

Removed
40x40

Removed
50x50

Traffic light 51.92 52.65 59.86 66.84 47.25 31.73
Traffic sign 66.47 67.65 74.15 76.64 60.78 46.46
Car 79.25 78.26 84.16 86.9 71.62 59.84
Person 51.15 55.84 60.18 62.52 49.71 38.26
Bus 63.13 64.58 68.92 71.87 60.86 43.27
Truck 47.81 50.63 57.27 60.24 45.32 32.61

Figure 13: Different artificial windows sizes used to remove bad bounding boxes

Rider 61.78 62.42 66.58 69.36 58.75 46.97
Bike 72.43 75.68 79.91 81.34 69.64 57.31
Motor 67.5 69.84 76.62 80.85 64.93 50.18
Overall mAP 62.3 64.17 69.70 72.93 58.78 45.15

Table 16: Label mAP result after reducing boxes mechanism is performed

The previous table shows the mAP results per label of using Reducing Boxes algorithm on Yolov4. This
result shows how removing the overlapping boxes helps the detection model to improve the accuracy of
all labels.

7.5.3.2 Specific training for the detection models
Another way that can improve the accuracy is to train the detection models using specific images. In this
way, the detection model has been trained to work for specific situations. Regarding BDD100k, the images
has 7 different attributes, such as, road type, scene, time of day, has pedestrians, traffic light colour, has
zebra crossing and brightness. However, for this experiment, only the attributes road type, scene and time
of day are used because they have more priority regarding ASIL D requisite.

Figure 14: Number of images per attribute value

For training a detection model is necessary to have at least 20,000 images. Figure 14 shows the number
of images per attribute value. As consequence, this experiment can be made using only the attribute
values of city street (Road Type), daytime (Time of day), night (Time of day) and clear (Weather). We are
showing the data of city street, daytime and night.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Figure 15: mAP comparison of specific training using attribute values to the whole dataset of

attribute value used for specific training

Figure 15 shows the mAP comparison of training each detection model only with images with city street,
daytime or night attribute values, against the same detection model trained using the whole dataset. To
calculate the mAP, that uses the images from validation dataset, only images of the specific attribute value
are used. As a result, there is an increment in all cases. This increment is higher for daytime having an
average increment of 10% while night has the lowest increment about 6%.

Summarizing, with this experiment it is demonstrated that there are situations that is better to use specific
dataset for training instead of having a dataset with diverse situations. Using this idea, a system could use
multiple detection models and use them depending on the situation, such as, a model that works in city
street attribute value when the car is inside the city, or two models that one works with daytime and the
other when is night. The only requisite is that the system will need to have a mechanism to detect if the
car is in a city street or it is daytime. In this experiment, it has been used the whole dataset, that means,
the reducing boxes algorithm has not been used. For this reason, we want to join specific training with
reduction boxes mechanism in the future. Additionally, in the future, test combinations of attributes
values will be tested, such as, having a model that works on daytime and when the car is in a city street.

7.6 Stability of the trained model
7.6.1 Definition of ‘stability of the trained model
According to section 1.7.6 of the MLQM guideline, the term “stability of the trained model” means that a
machine-learning component shows a reaction to input data which is not included in learning datasets
sufficiently similar to data in learning datasets. Ensuring this quality includes evaluating a model’s
generalization ability, evaluating a model’s reaction to corner cases/rare cases, evaluating the model’s
performance on adversarial examples. Assessing model’s robustness to these issues or the stability of the
models is not a single step process in the agile AI development cycle. Rather, various techniques and
measures are encouraged to be integrated in different stages of the AI development life cycle.

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

Whole
dataset City

Street

Trained with
City Street

Whole
dataset
Daytime

Trained with
Daytime

Whole
dataste Night

Trained with
Night

YOLOv3 + ASFF YOLOv4 YOLOv5 Faster R-CNN

7.6.2 Steps required for evaluation
Steps that can be executed by the solution designer to evaluate this inter property is discussed below:

• Evaluating generalization capability: In real world cases, there will be a lot of variations in input
data. It is not possible to include all of them in training. Primarily, it is essential to include input
data from all over the domain and hope that the model will behave properly within a close
proximity of our training dataset. Next, overfitting tendency of models should be kept in check
while training. Last but not least, the model’s generalization ability should be tested on inputs
never encountered by the model while training and validation period. Used evaluation techniques
and their effectiveness needs to be described beforehand.

• Evaluating robustness to noise/adversarial examples: There is always a possibility of added noise
in input data. So, the noise handling capabilities or robustness to specific noises of concerns may
need to be measured as well. In section 1.7.2, the guideline mentions that these evaluation
techniques can be done directly by numerical analysis or indirectly by test method management.
Evaluation procedures of measuring robustness and the level of robustness needs to be described
to reflect the response of the model to adversarial examples.

7.6.3 Evaluating generalization capability
For this section, a different dataset has been used to evaluate the performance of the detection models
used after they have been trained using BDD100k. In this case, NuImage [Caesar, 2019] dataset has been
used. NuImage has the following properties:

Labels # Images has weather has time of day 3d bounding box 2d bounding box
23 93476 No Yes (timestamp) Yes No

Table 17: NuImage dataset description

This dataset contains 93476 images divide it by train, test and validation data:

 Number of images Percentage on dataset (%)
Train 67279 71.97462
Val 16445 17.59275
Test 9752 10.43262

Table 18: NuImage dataset images distribution

However, there are images that do not have any label at all:

Figure 16: NuImage distribution of images that have and not have annotation

So, it is possible to only use 60,668 and 14,884 images for training and validating the detection models,
respectively. Regarding the amount of annotations:

Label Training Validation Total Percentage
animal 173 82 255 0.04
human.pedestrian.adult 121200 28721 149921 21.61
human.pedestrian.child 1683 251 1934 0.28
human.pedestrian.constru 10465 3117 13582 1.96
human.pedestrian.persona 1828 453 2281 0.33
human.pedestrian.police_ 368 96 464 0.07
human.pedestrian.strolle 293 70 363 0.05
human.pedestrian.wheelch 33 2 35 0.01
movable_object.barrier 70112 18433 88545 12.76
movable_object.debris 2461 710 3171 0.46
movable_object.pushable_ 3030 645 3675 0.53
movable_object.trafficco 69016 18587 87603 12.63
static_object.bicycle_ra 2461 603 3064 0.44
vehicle.bicycle 13708 3352 17060 2.46
vehicle.bus.bendy 203 62 265 0.04
vehicle.bus.rigid 6538 1823 8361 1.21
vehicle.car 202809 47279 250088 36.05
vehicle.construction 4768 1303 6071 0.88
vehicle.emergency.ambula 34 8 42 0.01
vehicle.emergency.police 104 35 139 0.02
vehicle.motorcycle 13682 3097 16779 2.42
vehicle.trailer 3285 486 3771 0.54
vehicle.truck 29456 6858 36314 5.23

Table 19: NuImage label distribution and (in green) labels used for converting to BDD100k labeling

0

20

40

60

80

100

0

10000

20000

30000

40000

50000

60000

70000

80000

Train Val Test

%
 o

f i
m

ag
es

 w
ith

ou
t l

ab
el

s

Am
ou

nt
 o

f i
m

ag
es

Images with labels Imags without labels Percentage

BDD100k is a dataset with 10 labels while NuImage has 23 labels. As consequence, the solution designer
has reduced the 23 labels to the ones that can match the detection models trained by BDD100k. Not all
labels can be used, so it has been highlighted in green color on the previous table the labels used to
convert NuImage annotation in BDD100k annotation. This is necessary to evaluate the capabilities of the
detection models because it is necessary to have the ground truth of NuImage annotation. As
consequence, only the following BDD100k labels can be detected: bike, bus, car, motor, person and truck.

Figure 17: Accuracy comparison of Yolov4 on NuImage validation dataset after being trained by
BDD100k and NuImage training datasets.

To compare the results, it has been trained 2 different models of Yolov4. One model has been trained
using BDD100k training dataset, while the other model has been trained using NuImage training dataset
after the labels has been converted on BDD100k annotations. The model trained using BDD100k is used
to know how effective the detection model capability performs images from outside the dataset, and the
other model is used as a ground truth to know the difference if the model was trained using the same
dataset. Figure 1 shows this comparison. The labels car, bus and truck achieve similar accuracy, less than
5%. Motor is the label with the highest difference between the models (about 16%). The reason is because
BDD100k has rider label as well, and the model sometimes annotates the rider and not the motor.

Comparing the mAP of both models, the BDD100k achieves 54.64% and the other model achieves 61.32%.
This result is less than 7%. As a result, Yolov4 achieved a good capability after being trained using BDD100k
to work with images outside the dataset.

7.6.4 Evaluating robustness to adversarial images
To evaluate the robustness of the object detection models it has been decided to use Surprise Adequacy
that uses adversarial examples. Adversarial example data needs to be generated introducing specific noise
patterns or using available technologies for adversarial attack. Some popular techniques of adversarial
attacks mentioned in recent literatures are:

• Fast Gradient Method (FGSM)Invalid source specified.
• Basic Iterative Method (BIM-a, BIM-b)Invalid source specified.

0

10

20

30

40

50

60

70

80

90

100

bike bus car motor person rider traffic
light

traffic
sign

train truck mAP

Yolov4 trained using BDD100k Yolov4 using NuImages

• Jacobian-based Saliency Map Attack (JSMA)Invalid source specified.
• Optimization-based attack (Opt)Invalid source specified.

In this research, it is used FGSM leaving the other three adversarial attacks for future work.

7.6.4.1 Complications of adversarial attack on object detection models:
One matter of concern is that even the most recent literatures on adapting adversarial attacks for NN
architectures (FGSM, BIM-a, BIM-b, JSMA and Opt (C&W)) only deals with traditional convolutional neural
networks and it is not working with all. These adapting adversarial attacks use the last layer of the NN to
generate adversarial examples. Standard state-of-the-art object detection models are unique and
complex in terms of their architecture. Especially the divergent structure of last few layers makes it very
difficult to use these available methods to generate adversarial examples. Also, output predictions in Yolo
are different than other NN. In other NN, normally, the output layer gives the scores of each label, while
Yolo, with all its versions, has 3 parallel output layers that consists of three detection tensors, each with
its own prior boxes and each twice the resolution of the previous. After non-max suppression method is
used making only the boxes with higher label score are kept. For the creation of adversarial examples is
not possible to use non-max suppression because it is a selection method and not a layer. As consequence,
the generation of adversarial examples using Yolo neural networks is an issue that we tried to resolve.

Figure 18: Example of Yolo last layer performance

7.6.4.2 Attempted approaches:
The solution designer attempted to adapt FGSM attack for YOLOv4 architecture being unsuccessful due
to the FGSM attack cannot work with NN that has multiple parallel output layers. Different approaches
were taken to fix this issue:

① Changing the framework from Tensorflow-Keras to Pytorch
② Using different architectures such as YOLOv3, YOLOv5
③ Modifying the prediction output, making other labels 0 and keeping the confidence of the label

found. The problem is that it cannot generate the adversarial example because it cannot
determine which label has the closest confidence score because all the other labels have
confidence 0 and they are not closed to determine the adversarial example.

④ Generating gradients manually instead of using tf.gradients in TensorFlow
⑤ Using different adversarial attacks like BIM-a and JSMA etc.

Yolo result output of last 3 layers

Yolo result after performing non-max suppression

7.6.4.3 Possible solutions:
All previous mentioned solutions did not work, however, the solution designer proposed other solutions
that help to create adversarial examples and/or detect corner cases:

• Using a different NN model, such as Inception or MobileNet. These models do not have the same
last parallel layer problem as Yolo. As a trial, MobileNetv2 was used to generate FGSM adversarial
examples and it works perfectly. Adapting Surprise Adequacy to these models do not represent
any problem. So, using a different model to determine the corner cases and after that using those
corner cases in Yolo can be a suitable solution.

Figure 19: Example from successful implementation of FGSM attack on MobileNet

• Trying different attacks can be a solution to the challenge. However, all the methods that
generate adversarial examples to do Surprise Adequacy use output label confidence and, as
consequence, they only work if the NN has one last output layer and not multiple last output
layers. So, defining new attacks different that the ones mentioned might be necessary. For
example, using 1-pixel change Invalid source specified. method to detect the corner cases that
has a high percentage to cause a bad labelling. If it has a high percentage, it can be removed from
the training data. After that, we can retrain the detection model and check how it is working.

7.6.4.4 Adapting adversarial attacks using a different NN
In order to evaluate the robustness of the detection models trained, the solution designer decided to use
MobileNetv2 to create the adversarial examples and examine the robustness using Surprise Adequacy.
Adversarial examples are malicious attempts to perturb the dataset adding different noise or attacks to
the images in the dataset. In this case, it has been used MobileNetv2 that has been trained using BDD100k
and Tensorflow-Keras framework. After training MobileNetv2, the trained model obtains an accuracy of
84.49% but with an FPS of 4.5. As consequence, due to the lower number of FPS MobileNetv2 was never
considered to be used as an autonomous driving car detection model. However, we can use MobileNetv2
to generate the adversarial attacks, such as, FGSM. After the adversarial examples are generated, Surprise
Adequacy is used to examine the corner cases. This corner cases have been assumed that will be the same
for all detection models and they will be treated in the same way for all detection models. The following
images show examples of adversarial examples generated using MobileNetv2 and FGSM.

Figure 20: Data generated using FGSM attack on BDD100k dataset for eps= 0.01 & 0.13

7.6.4.5 Adapting surprise adequacy to work with MobileNetv2
We have talked about Surprise Adequacy, but we did not explain what it means and do. Surprise Adequacy
is a mechanism that study the quality of the data in a dataset. For this purpose, Surprise adequacy defines
an adequacy criterion that quantitatively measures behavioral differences of validation to the training
data. For the measurement, Surprise Adequacy uses Activation Trace to follow the activation of the
neurons. Let N={n1, n2 , . . .} be a set of neurons that constitutes a neural network N, and let X={x1 , x2 , . . .}
be a set of inputs. The activation value of a single neuron n with respect to an input x is defined as αn (x).
For an ordered set of neurons, let N⊆N, αN(x) denote a vector of activation values, each element
corresponding to an individual neuron in N: the cardinality of αN(x) is equal to |N|. αN(x) is the Activation
Trace (AT) of x over the neurons in N. Therefore, for the set of inputs X, we can define the Activation
Traces as AN(X)={αN(x)|x∈X}.

Regarding Surprise Adequacy, it is computed the Activation Traces of all training data (AN(T)). After that,
Surprise Adequacy computes the Activation Trace of a new input x from the validation data (AN(x)). The
result is obtained comparing the AN(x) to AN(T). There are different mechanisms to compare them, but for
this reference guide we are only using Distance-based Surprise Adequacy (DSA). We do not discard to use
different comparison mechanisms for Surprise Adequacy in the future. It is not the objective of this
reference guide to explain in more detail Surprise Adequacy, Activation Traces and DSA. In case you want
to know more information, please read the following papersInvalid source specified..

DSA has been defined using the Euclidean Distance between the AT of a new input x and ATs observed
during training:

𝑑𝑑𝑆𝑆𝐸𝐸𝑆𝑆𝐶𝐶 = �𝐶𝐶𝑁𝑁(x) − 𝐶𝐶𝑁𝑁(𝑋𝑋𝐶𝐶)�

𝑑𝑑𝑆𝑆𝐸𝐸𝑆𝑆𝐶𝐶 = ‖𝐶𝐶𝑁𝑁(𝑋𝑋𝐶𝐶)− 𝐶𝐶𝑁𝑁(𝑋𝑋𝐶𝐶)‖

𝐷𝐷𝐴𝐴𝐴𝐴(𝐸𝐸) =
𝑑𝑑𝑆𝑆𝐸𝐸𝑆𝑆𝑎𝑎
𝑑𝑑𝑆𝑆𝐸𝐸𝑆𝑆𝑏𝑏

Additionally, we have defined 3 more DSA measurements, that we have given the name of DSA1, DSA2 and
DSA3, being DSA0 the original DSA explained before. These new DSAs are used to detect the corner cases
in a dataset. Figure 1 represents the differences among these DSAs. DSA1 compares x’s novelty in its
belonging class and its class novelty to other classes. dista is the same as DSA0.

𝐸𝐸𝐶𝐶 = argmin
𝑐𝑐𝐸𝐸𝑆𝑆∈{𝐶𝐶−𝑐𝑐𝐸𝐸}

𝐸𝐸𝑆𝑆−𝐸𝐸2 ‖𝐶𝐶𝑁𝑁(𝐸𝐸)− 𝐶𝐶𝑁𝑁(𝐸𝐸𝑆𝑆)‖

𝑑𝑑𝑆𝑆𝐸𝐸𝑆𝑆𝐶𝐶 = ‖𝐶𝐶𝑁𝑁(𝐸𝐸)− 𝐶𝐶𝑁𝑁(𝐸𝐸𝐶𝐶)‖

DSA2 compares the testing data x to data of all classes.

𝑚𝑚 =
1
𝑘𝑘
�𝐸𝐸𝑖𝑖

𝑘𝑘

𝑖𝑖=1

, {𝐸𝐸𝑖𝑖|𝑐𝑐𝑥𝑥𝑖𝑖 = 𝑐𝑐𝑠𝑠 }

𝑑𝑑𝑆𝑆𝐸𝐸𝑆𝑆𝐶𝐶 = �𝐶𝐶𝑁𝑁(x) − 𝐶𝐶𝑁𝑁(𝑚𝑚𝐶𝐶)�

𝑑𝑑𝑆𝑆𝐸𝐸𝑆𝑆𝐶𝐶 = ‖𝐶𝐶𝑁𝑁(𝐸𝐸)− 𝐶𝐶𝑁𝑁(𝑚𝑚𝐶𝐶)‖

where, ma represents the center of class ca (ca =cx); mb is the nearest center point of class cb, (cb ∈ {C – cx}).

DSA3 compares the center of the neighborhood of data x to the k-nearest neighborhood. dista and distb
are the same as DSA2, but:

𝑚𝑚 =
1
𝑘𝑘
�𝐸𝐸𝑖𝑖

𝑘𝑘

𝑖𝑖=1

, {𝐸𝐸𝑖𝑖|𝑐𝑐𝑥𝑥𝑖𝑖 = 𝑐𝑐𝑠𝑠 & 𝐸𝐸𝑖𝑖 ∈ 𝑁𝑁𝑘𝑘(𝐸𝐸)}

Figure 20: Diagram of four types of DSA: the original DSA0 (a), DSA1(b), DSA2(c) and DSA3(d).

For the experiments, we define that we want to remove from the BDD100K dataset the corner cases that
has more than 1 in their distance. The idea is to detect the corner cases of the training data, remove them
from the training dataset and re-train all detection models: Yolov3 + ASFF, Yolov4, Yolov5, Fast R-CNN and
MobileNetv2.

Regarding BDD100k, there are 1.286.871 bounding boxes in the training dataset (dataset contains 69.863
images). The following graph shows the distribution of bounding boxes in the validation data that has
been used for the Surprise attack:

Label # of BB

bike 7210

bus 11672

car 713211

motor 3002

person 91349

rider 4517

traffic light 186117

traffic sign 239686

train 136

truck 29971

0

100000

200000

300000

400000

500000

600000

700000

800000

Amount of Bounding Boxes

Figure 21: BDD100k label distribution

There are too many car bounding boxes. Nevertheless, there are enough bounding boxes to detect the
corner cases of all labels, including train. This is because with 100 images, Surprise Adequacy has enough
data to determine the corner cases among the labels.

Figure 22: Surprise Adequacy calculation of the first 750 bounding boxes of bike in the training data

Figure 22 shows Surprise Adequacy calculation of DSA0, DSA1, DSA2 and DSA3 of the first 750 bike bounding
boxes in the training dataset. If the distance is higher than 1.5 in any of the DSAs calculated, then the
bounding box is defined as a corner case. As an example, it has been marked with red circle 3 corner cases
in Figure 22 and they are presented in Figure 23.

 ID DSA0 DSA1 DSA2 DSA3

 73 1.54 0.82 0.97 0.79

ID DSA0 DSA1 DSA2 DSA3

131 0.52 0.39 1.6 1.15

ID DSA0 DSA1 DSA2 DSA3

368 4.32 0.98 1.11 0.78

Figure 23: Bike corner case examples detected using Surprise Adequacy

 As a result, checking all labels of BDD100k:

0

1

2

3

4

5

6

7

8

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

33
1

35
3

37
5

39
7

41
9

44
1

46
3

48
5

50
7

52
9

55
1

57
3

59
5

61
7

63
9

66
1

68
3

70
5

72
7

74
9

Bounding Box ID

DSA0 DSA1 DSA2 DSA3

Figure 24: Amount of corner cases detected by labels

The main issue with the graph above is that the BDD100K has too many car labels compared to other
labels. As consequence, it is difficult to determine what is the impact of DSAs regarding each label.

Figure 25: Percentage of corner cases in BDD100k dataset

However, using the percentage, to determine how many corner cases are detected per label, it is possible
to see that depending on the label the DSA works better than other DSAs. For example, DSA2 can detect
more corner cases for label Motor. On overall, DSA3 is not detecting very well corner cases for BDD100K,
such as, it cannot detect any corner case for Train label.

In order to use the corner case detections, the solution designer trained 6 different MobileNetv2:

• 1 model per each DSA detection removing the corner cases detected in the training dataset
• 1 model removing all corner cases independently which DSA detected
• 1 model without removing any corner case of the training dataset

It has been used a MobileNetv2 that has been previously trained to identify images from Imagenet dataset.
In this way, the training is faster and only the last layers need to be re-trained.

0

500

1000

1500

2000

2500

Bike Bus Car Motor Person Rider Traffic
Light

Traffic
Sign

Train Truck

DSA0 DSA1 DSA2 DSA3

0
1
2
3
4
5
6
7
8
9

Bike Bus Car Motor Person Rider Traffic
Light

Traffic
Sign

Train Truck AVG

%

Percentage DSA0 Percentage DSA1 Percentage DSA2 Percentage DSA3

Figure 23 Model accuracy after removing corner cases using MobileNetv2

Multiple things to say about Figure 23. Without removing any image when training (All images),
MobileNetv2 obtains 84.5% of accuracy. All DSAs improve the accuracy of MobileNetv2 in different
amounts. DSA2 is the one that obtains the highest (87.635) with 3.13% better result than using all images.
This can be because DSA2 is the one that detects the more quantity of corner cases. At this point, what
happen if any image detected as corner case is removed independently of the DSA and the model is re-
trained? The result is All DSA Together. In this case, there is an improvement of 3.86% regarding having
all images when training. These results show that Surprise Adequacy can detect the corner cases and if
they are removed from the training dataset, the accuracy is increased.

The second part of this section is to remove the corner cases detected from the training dataset and re-
train Yolov4. This is made because MobileNetv2 has less than 15 FPS and it cannot be used for
autonomous driving detection for safety reasons (SADL D). For this reason, it is used Yolov4 to check if the
corner cases detected by Surprise Adequacy and MobileNetv2 can be used for other detection methods.

84.4999373

86.28883265

87.22848
87.63279525

86.3562179

88.36178956

82

83

84

85

86

87

88

89

All bounding
Boxes

DSA0 DSA1 DSA2 DSA3 All DSA
Together

Ac
cu

ra
cy

 (%
)

Figure 24 Model accuracy after removing corner cases using Yolov4

Figure 24 shows the result of removing the corner cases detected using MobileNetv2 from training dataset
and then re-training Yolov4. As consequence, there is an increment of accuracy in all corner cases
removed. The increment is similar to the one obtained on MobileNetv2 results. This demonstrates that
Surprise Adequacy can detect corner cases using a different Neural Network and it can be used for another
Neural Network as well. The removing of the corner cases increases the robustness of the dataset and the
detection models as well.

It is necessary to remark that Surprise Adequacy is used in this case to improve the accuracy, however,
the correct functionality of Surprise Adequacy is to increase the robustness of the models. The
improvement of accuracy in this case is because BDD100k has too many car labels and the highest number
of corner cases detected are cars. In a normal case, the accuracy should be reduced due to the training
process is losing information because the corner cases have been removed from the dataset. However, in
BDD100k, removing the corner cases make the detection models to be more confidence when they are
detecting cars. This definition is made because the boundary among car labels and others is removed.

7.6.4.6 1-Pixel Change
In the previous section it has been used FGSM attack to generate adversarial examples. However, in this
section, it is presented a new adversarial example generator. In the literature, there are three widely used
distance metrics for generating adversarial examples, all of which are Lp norms.

The Lp distance is written ||x – x0||p, where the p-norm ||·||p is defined as

‖𝑆𝑆‖𝑝𝑝 = ��|𝑆𝑆𝑖𝑖|𝑝𝑝
𝑛𝑛

𝑖𝑖=1

�

1
𝑝𝑝

1) L0 distance measures the number of coordinates i such that xi ≠ x’i . Thus, the L0 distance
corresponds to the number of pixels that have been altered in an image.

62.3

65.55
66.29

67.72

65.16

69.54856003

58

60

62

64

66

68

70

72

All bounding
Boxes

DSA0 DSA1 DSA2 DSA3 All DSA
Together

Ac
cu

ra
cy

 (%
)

Figure 25: L0 image example

2) L2 distance measures the standard Euclidean (rootmean-square) distance between x and x’ images.
The L2 distance can remain small when there are many small changes to many pixels.

Figure 26: L2 image example

3) L∞ distance measures the maximum change to any of the coordinates:
�𝐸𝐸 − 𝐸𝐸′�∞ = 𝑚𝑚𝐶𝐶𝐸𝐸 ��𝐸𝐸1 − 𝐸𝐸′1�, . . . , �𝐸𝐸𝐶𝐶 − 𝐸𝐸′𝐶𝐶��

FGSM uses L∞ to generate adversarial examples. The definition of FGSM also explains its name: It
is the gradient of the loss function, and because of the L∞ bound on the perturbation magnitude,
the perturbation direction is the sign of the gradient.

Figure 27: L∞ image example

For evaluating robustness, the maximum safe radius (MSR) is often used. MSR for the image A and the
trained model (classifier) f is the distance such that

𝑀𝑀𝐴𝐴𝑅𝑅(𝐴𝐴,𝑓𝑓) = 𝑚𝑚𝐶𝐶𝐸𝐸�|𝐴𝐴 − 𝐴𝐴′|𝑝𝑝 𝑓𝑓(𝐴𝐴) = 𝑓𝑓(𝐴𝐴′)�

In other words, MSR is the distance to the nearest adversarial example.

Regarding the BDD100k, the solution designer estimated the MSR for each label. Nevertheless, due to the
research already has FGSM that is L∞, the solution designer tries to generate adversarial examples of L0
and/or L2. It has been tried to develop a method for L2 without success, however it was possible to
generate adversarial examples using L0. This means, it could only use p=0 for the adversarial generation.

L0 is based on adding noise to images changing pixels on images. Therefore, the solution designer
developed 1-pixel attack method that is based on L0.

Figure 28 1-pixel attack method using BDD100k
Figure 28 shows how 1-pixel attack is working with BDD100k training dataset. First, each bounding box of
the dataset is extracted. After, the extracted bounding box is treated as an image were the method
modifies 1 pixel. Then, it is changed 1 pixel of the image, that is the bounding box only. So, the modified
image is sent to the detection model to determine if the detection model still can recognize the object
correctly. For changing the color of the pixel, the solution designer decided to swap the RGB color of the
pixel to the opposite RGB color of that pixel.

Figure 29: 1-Pixel attack truck example image

This process is made per each pixel of the bounding box. Keep in mind that only 1 pixel is changed in the
image every time. After all pixels in the image has been processed, the method summarizes the confidence
label of checking all modified images and how many images have been checked. For example, for an image
of 300x200 pixels, 1-pixel attack force the detection model to check 60,000 images gathering the results
of the 60,000 images.

Label Confidence % by the NN
bike 0
bus 42.86
car 62.59
motor 21.68
person 0
rider 0
traffic light 0
traffic sign 29.48
train 0
truck 95.15

images checked 86390
Images incorrect 68327
Failed Percentage 79.09133

Using the bounding box of Figure 28 and Yolov4 as the detection model, the confidence percentage of
image after using 1-pixel attack shows that the detection model recognizes the image as car or traffic light.
However, when it is recognized as car, the detection model is 98% sure it is a car while if it is recognized
as traffic light, only 30,14% of confidence. For this process, it has been checked 40,847 images and in 7 of
them the detection models made an incorrect detection being only 0.017% affected by noise. As a result,
this bounding box can support noise and is good to be used for training the model.

As an instance, if it is used Figure 29 by 1-pixel attack and Yolov4 as detection model, the detection model
can recognize it as truck, car, bus, motor and traffic sign. The confidence of recognizing the image as car
is bigger than 60% causing an incorrect training process for the detection model due to this image is a
corner case between truck and car. In addition, if this image has noise, the system fails about 79% of the
times to recognize it properly. As consequence, this image is a clear example of how 1-pixel attack can
recognize corner cases and bad bounding boxes to be used for the training process.

1-pixel change can detect the images that are creating noise in the NN and detect the corner cases.
However, it is a long process if the user wants to examine all the bounding boxes in the dataset. For
example, for the experiments, it has been used the ABCI server (powerful server machine) for 8 hours. In
that time 1-pixel attack achieves to check 18 images that contain 340 bounding boxes. This is around 43
boxes per hour. There are 1,272,818 bounding boxes in the whole training dataset. As consequence, this
means about 29,600 hours (1233.33 days or 3.38 years) to check the whole training dataset of BDD100k.
Furthermore, after this detection of bad bounding boxes, it is necessary to deal with them, such as,
retraining the models.

Figure 30: ABCI experiment using 1-pixel attack to detect incorrect bounding boxes

Figure 30 shows the result of the ABCI experiment of using 1-pixel attack in BDD100k for 8 hours. The
result shows that 11% of the bounding boxes of these 18 images are bad bounding boxes to be used for
the training process. Additionally, it is highlighted that image 3 adds only noise to the detection model.
Unfortunately, due to time, the solution designer could not check all bounding boxes in the BDD100k
dataset and as consequence, it could not re-train the detection models removing the corner cases and
check the accuracy obtained. Nevertheless, there are two ways to resolve this issue. One is to improve
the algorithm, such as, adapting parallelization to make it faster or focusing only on one label instead of

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Am
ou

nt
 o

f B
ou

nd
in

g
Bo

xe
s

ID image checked
Boxes with higher failed percentage than 50% Remaining boxes in the image

all labels at the same time. The second way to resolve this issue is to combine 1-pixel change with Surprise
Adequacy. The idea is to obtain the corner cases using Surprise Adequacy and after, use 1-pixel change to
classify the corner cases detected. In this way, 1-pixel change only checks a few bounding boxes compared
to check all bounding boxes and prioritize the corner cases that has worst failed percentage. Additionally,
using 1-pixel change with Surprise Adequacy helps to determine which labels are close to the corner case
thanks of using the confidence obtained on 1-pixel change examination.

7.7 Dependability of underlying software system
7.7.1 Definition of ‘Dependability of underlying software system’:
In the MLQ guideline, the term “dependability of underlying software system” represents that the underlying
conventional software (e.g., training programs and prediction/inference programs) functions correctly. This
notion includes the software quality requirements such as the correctness of algorithms, the time/memory
resource constraints, and the software security. Therefore, to ensure the soundness of components the
solution designer needs to:

• Check correctness of the algorithms
• Choose well-evaluated and qualified resources while using open-source implementations
• Solve the bugs due to frequent version-ups of the libraries
• Check similarity between testing environments and actual operational environments

7.7.2 Correctness of algorithms
Concerning the correctness of the algorithms, first it is necessary to understand what correctness means.
In this case, the correctness of an algorithm is achieved when the algorithm is correct gives expected
output with respect to a specification and the algorithm terminates without any error. This is called total
correctness.

For example, in this research, some additional algorithms were designed for various purposes. Such as-
robustness evaluation (1-pixel change), data annotations (annotation tool) and data label conversion (the
conversion of NuScene to BDD100k labels). The only way to prove the correctness of these algorithms is
to test them using all possible inputs and analyzing their outputs. The algorithms produced expected
outputs with no error or warning involved.

7.7.3 Soundness of open-source elements:
Python language has been used for developing this AI. It uses various open source packages which should
be version compatible with each other. So, the list of used packages and their versions should be provided
by the developer.

Programing language Version
Python 3.8.3
Package Version
NumPy 1.18.5
TensorFlow 2.3.1
PyTorch 1.6.0
SciPy 1.5.2
Pandas 1.1.0
Matplotlib 3.3.0

Table 20: List of open-source packages used in this research

To avoid any kind of problem that can occur because some libraries and dependencies may differ among
the detection models, docker images have been created that contains all the libraries and dependencies
of each detection model used.

7.7.4 Dependability of hardware in training and operational environment:
The hardware used is significantly important for verification of soundness of components. Due to the
complexity of object recognition and image classification models, it is recommended the use of GPU for
training and inference. With the current state of the research, it is possible to use the docker images
without GPU when only inference is performed. However, if the user wants to re-train a detection model,
the solution designer recommends using a machine or server with GPUs.

The dockers have been tested in 5 different machines and servers with different hardware specifications.
It has been demonstrated that the dockers can work without any issue adapting to the new hardware. At
this current state, all the research has been made using testing environments and not operational
environments that is the hardware objective. For now, the testing environment has been set to be similar.
However, hardware requirement should be considered in dependability assurance.

7.7.5 Soundness in usage of memory
Proper documentation of maximum usage of memory during training and inference time should be
recorded and evaluated so that the program does not face memory inadequacy in operational
environment. Based on these records, efficient memory allocation of the device in operational
environment can be accomplished.

Model architectures and weights: AI developers generally use Hierarchical Data Format (HDF) file (.h5) to
store trained AI networks and their weights. For example, the saved trained network for YOLOv4 has
490,961 parameters and takes about 52.43 MB space on the hard drive.

Source codes: Different algorithms, written by programing languages are part of the workflow of the
machine. These codes usually do not take much space on hard drive compared to data and trained weights.

Input data: Memory required for the training and the validation dataset can be very large depending on
number of samples and resolution of the images. For this research, all the images originally extracted from
BDD100k video dataset have a resolution of 1280 x 720 pixels. The memory usage for the training dataset
(70k images), validation dataset (10k images) and testing dataset(20kimages) are 3.77GB, 553 MB and
1.07 GB respectively. Since input data resolution and size can change in operational environment due to
different came settings or other reasons, memory usage of input data should be recorded during training
and inference time.

Processing Unit specifications: Minimum RAM and GPU needed during both training and inference time
should be examined and recorded.

7.7.6 Efficiency in training time and inference time:
Time is a critical issue for an ML model when being applied to a real-life situation. In case of an
autonomous vehicle, critical decisions may have to made within split seconds after correctly identifying a
life-threatening test case. So, the lower the inference time, the better the dependability of the AI product.
Inference timing should be recorded for all the candidate models and evaluation should be done to check
if the inference procedure is taking minimum time.

Time of training should also be recorded to check if any unnecessary time loss is occurring in any part of
the training program. Faster algorithms are encouraged to be used in development process.

7.8 Maintainability of quality during operation
7.8.1 Definition of ‘maintainability of quality’
According to section 7.8 of the reference guide, maintainability of quality is the process to update the
system developed or incorporate new data to improve the detection models either for the training or
validation dataset. As consequence, it is required to continuously monitor behaviors of machine learning
based systems and machine learning components for the purpose of checking if the quality fulfilled at the
beginning of de development is maintained throughout the whole research project. There are two
operational patterns to update the system developed. One is to return to the development phase and
change the whole process adding the new changes and deploying the whole research from the
development phase. The other one is to update the necessary software components to keep update the
system. So, update the necessary components only is shorter than the other pattern but the risk of getting
incorrect dependencies and worst detection models is higher.

Regarding the reference guide, there are four tasks of monitoring the maintainability:

1. Accuracy monitoring
2. Model output monitoring
3. Input data monitoring
4. KPI monitoring

7.8.2 Accuracy monitoring
Accuracy monitoring is a method to monitor the accuracy of the detection models and update the
information according to the accuracy improvement. In this research, the accuracy of the detection
models has been measured using mean Average Precision (mAP). In previous sections, we have discussed
how the mAP have been monitored and used to improve the detection models. These improvements have
been made improving the images in the dataset together with re-training the models.

7.8.3 Model output and input data monitoring
Model output and input data monitoring refer to the monitoring of results of inferences made by a trained
machine learning model and the monitoring of its input data, respectively. In both cases, the solution
designer has used two different mechanism: 1-pixel change and Surprise Adequacy. These mechanisms
helped to update the training dataset to detect, modify or remove the corner cases that added noise to
the training process.

7.8.4 KPI monitoring
KPI monitoring focuses on monitoring the detection models from the viewpoint of KPI. Key Performance
Indicator (KPI) is an indicator which quantifies the attainment level of functional requirements to be
attained by output from machine learning components through machine learning based systems. In other
words, a KPI is a measurable value that demonstrates how effectively a project is achieving key objectives.
Defining KPI can be tricky. The operative word in KPI is “key” because every KPI should related to a specific
project outcome with a performance measure. KPIs need to be defined according to critical or core
business objectives.

To define a KPI is necessary to reply the following questions:

• What is your desired outcome?
• Why does this outcome matter?
• How are you going to measure progress?
• How can you influence the outcome?
• How will you know you’ve achieved your outcome?
• How often will you review progress towards the outcome?

This research focuses on autonomous driving and, as consequence, the solution designer has decided to
use a standard definition of security levels when defining autonomous driving machine learnings. In
particular, it has being selected ASIL (Automotive Safety Integrity Level) more concrete ASIL D. ASIL D
represents likely potential for severely life-threatening or fatal injury in the event of a malfunction and
requires the highest level of assurance that the dependent safety goals are sufficient and have been
achieved.
For this research, it has been used the following attributes from BDD100k:

• Weather: rainy, snowy, clear, overcast, partly cloudy, foggy, undefined
• Scene: tunnel, residential, parking lot, city street, gas stations, highway, undefined
• Time of Day: daytime, night, dawn/dusk, undefined
• Traffic light color: red, yellow, green, none
• Are there pedestrians: True, False
• Is there Zebra Crossing: True, False
• Brightness: super high, high, mid, low, super low

A total of 7 attributes and 31 attribute values.

Figure 31: Distribution of Images per attribute values and per training or validation data of BDD100k

0

10000

20000

30000

40000

50000

60000

ci
ty

 st
re

et
ga

s s
ta

tio
ns

hi
gh

w
ay

pa
rk

in
g

lo
t

re
sid

en
tia

l
tu

nn
el

un
de

fin
ed

cl
ea

r
fo

gg
y

ov
er

ca
st

pa
rt

ly
 c

lo
ud

y
ra

in
y

sn
ow

y
un

de
fin

ed
da

w
n/

du
sk

da
yt

im
e

ni
gh

t
un

de
fin

ed
pe

d_
Tr

ue
pe

d_
Fa

lse
tf

_g
re

en
tf

_y
el

lo
w

tf
_r

ed
tf

_n
on

e
zb

_T
ru

e
zb

_F
al

se
br

_s
up

er
_l

ow
br

_l
ow

br
_m

id
br

_h
ig

h
br

_s
up

er
_h

ig
h

Training Validation

Figure 32: Number of images per attributes on bDD100k

As you can see, there are attributes that appear more often than others, such as city street (49628 images)
and gas station (34). However, for the definition of KPI, we cannot use individual attribute values. We
want to find situations to define where the KPI will focus. As consequence if we combine the attribute
values in pairs. Doing this, we have 375 combinations.

Figure 33: Amount of images per pair-wise combination of BDD100k

Because it is difficult to correctly see the chart before, let’s focus on the first 30 combinations:

72000
74000
76000
78000
80000
82000
84000
86000
88000
90000
92000
94000

0

5000

10000

15000

20000

25000

30000

35000

40000

pe
d_

Fa
lse

 +
 zb

_F
al

se
rt

_c
ity

 st
re

et
 +

 zb
_F

al
se

rt
_c

ity
 st

re
et

 +
 b

r_
su

pe
r_

lo
w

to
d_

da
yt

im
e

+
br

_l
ow

pe
d_

Tr
ue

 +
 tf

_g
re

en
to

d_
ni

gh
t +

 tf
_n

on
e

tf
_n

on
e

+
br

_l
ow

rt
_r

es
id

en
tia

l +
 zb

_F
al

se
w

_u
nd

ef
in

ed
 +

 b
r_

lo
w

w
_s

no
w

y
+

pe
d_

Fa
lse

w
_p

ar
tly

 c
lo

ud
y

+
pe

d_
Fa

lse
rt

_c
ity

 st
re

et
 +

 w
_p

ar
tly

 c
lo

ud
y

w
_s

no
w

y
+

pe
d_

Tr
ue

w
_r

ai
ny

 +
 zb

_T
ru

e
w

_r
ai

ny
 +

 b
r_

m
id

to
d_

da
w

nD
us

k
+

w
_o

ve
rc

as
t

tf
_y

el
lo

w
 +

 b
r_

lo
w

rt
_h

ig
hw

ay
 +

 b
r_

hi
gh

rt
_u

nd
ef

in
ed

 +
 zb

_F
al

se
to

d_
da

w
nD

us
k

+
tf

_y
el

lo
w

rt
_t

un
ne

l +
 w

_u
nd

ef
in

ed
rt

_p
ar

ki
ng

 lo
t +

 b
r_

su
pe

r_
lo

w
to

d_
ni

gh
t +

 w
_f

og
gy

tf
_r

ed
 +

 b
r_

hi
gh

rt
_t

un
ne

l +
 to

d_
da

yt
im

e
to

d_
un

de
fin

ed
 +

 b
r_

m
id

to
d_

da
w

nD
us

k
+

w
_f

og
gy

to
d_

un
de

fin
ed

 +
 zb

_T
ru

e
w

_f
og

gy
 +

 b
r_

hi
gh

to
d_

un
de

fin
ed

 +
 tf

_y
el

lo
w

rt
_p

ar
ki

ng
 lo

t +
 b

r_
su

pe
r_

hi
gh

w
_r

ai
ny

 +
 b

r_
su

pe
r_

hi
gh

Figure 34: Top 30 amount of images per pair-wise combination of attribute values of BDD100k

Due to there is not enough images in all combinations, it is not possible to use all the combinations for
the KPI definition. For this reason, using the amount of images per combination and ASIL D, the solution
designer has focused only on Road Type, Weather and Time of Day. These 3 have more priority than the
others in terms of the visualization of the images. As consequence, they are more related to ASIL D than
the others. It is true that maybe Brightness could be included. In case that is included, it will be included
in the future.

Additionally, we are not counting the attribute values of undefined because it is not a real situation. Then,
there are 63 different combinations.

ID Combination Amount ID Combination Amount

 1 tod_night + w_clear 22884 33
rt_residential + w_partly
cloudy 580

2 rt_city street + w_clear 22750 34
tod_dawnDusk + w_partly
cloudy 570

3 rt_city street + tod_daytime 21811 35 rt_residential + w_rainy 487
4 rt_city street + tod_night 18748 36 tod_dawnDusk + w_snowy 436
5 tod_daytime + w_clear 12454 37 tod_dawnDusk + w_rainy 328

6 rt_highway + w_clear 10422 38
rt_parking lot +
tod_daytime 228

7 rt_highway + tod_daytime 8905 39 rt_parking lot + w_clear 169
8 tod_daytime + w_overcast 7551 40 rt_parking lot + tod_night 94
9 rt_highway + tod_night 7025 41 tod_night + w_overcast 72
10 rt_residential + tod_daytime 5658 42 tod_night + w_foggy 67

11 rt_city street + w_overcast 5121 43
rt_parking lot +
w_overcast 62

12 tod_daytime + w_partly cloudy 4262 44 rt_city street + w_foggy 61

0
5000

10000
15000
20000
25000
30000
35000
40000

13 rt_city street + w_snowy 3996 45
tod_night + w_partly
cloudy 49

14 rt_residential + w_clear 3800 46 tod_daytime + w_foggy 48
15 rt_city street + w_rainy 3395 47 rt_highway + w_foggy 41

16 rt_city street + tod_dawnDusk 2950 48
rt_parking lot + w_partly
cloudy 33

17 tod_daytime + w_snowy 2862 49 rt_parking lot + w_snowy 32
18 rt_city street + w_partly cloudy 2561 50 rt_tunnel + tod_daytime 32

19 tod_daytime + w_rainy 2522 51
rt_parking lot +
tod_dawnDusk 30

20 rt_highway + w_overcast 2336 52 rt_residential + w_foggy 27
21 tod_night + w_snowy 2249 53 rt_parking lot + w_rainy 21
22 tod_night + w_rainy 2208 54 rt_tunnel + tod_night 20
23 tod_dawnDusk + w_clear 2004 55 tod_dawnDusk + w_foggy 15
24 rt_residential + tod_night 1813 56 rt_tunnel + w_clear 8
25 rt_highway + w_partly cloudy 1705 57 rt_tunnel + w_rainy 7
26 rt_highway + tod_dawnDusk 1439 58 rt_parking lot + w_foggy 1
27 rt_residential + w_overcast 1239 59 rt_tunnel + tod_dawnDusk 1
28 tod_dawnDusk + w_overcast 1147 60 rt_tunnel + w_foggy 0
29 rt_highway + w_rainy 1105 61 rt_tunnel + w_overcast 0

30 rt_residential + w_snowy 795 62
rt_tunnel + w_partly
cloudy 0

31 rt_highway + w_snowy 707 63 rt_tunnel + w_snowy 0
32 rt_residential + tod_dawnDusk 599

Table 21: Amount of pair-wise images when road type, weather and time of day are combined

There are situations that are impossible to know or are unrealistic, such as, inside a tunnel know the
weather is partly cloudy (number 63). In contrast, there are situations that are realistic and there are not
enough images to be sure the accuracy of that combination. We are using a threshold of 100 images. For
example, Road Type (Residential) + Weather (Foggy) [ID 52] has 27 images and the following mAP per
label:

Combination bike bus car motor person rider traffic
light

traffic
sign

train truck Average IoU

residential +
foggy

0 0 57.61 0 0 0 0 100 0 0 56.98 15.76

Table 22:Label accuracy example of the pair-wise combination of residential and foggy attribute values

According with this label accuracy, the combination residential + foggy needs more images to detect
objects that are in a residential area, such as, persons, bikes, etc… However, this label accuracy is not
correct because there are not enough images to obtain the correct accuracy.

Focusing in the remaining attributes, the following Road Type with any kind of Weather and Time of Day
are candidates to be part of a KPI:

• City Street
• Highway
• Residential
• Parking lot
• Gas Stations

Regarding Tunnel, this attribute value is independent and needs to be checked alone in a KPI. For the
remaining combination of Time of Day with Weather, all are valid. As consequence, 55 different KPIs can
be created.

7.8.5 Example: KPI - Residential + foggy

Figure 35: An example of Residential + Foggy attributes

Figure 35 is an example of residential and foggy attribute value in BDD100k dataset. The solution
designer has examined all images with residential and foggy attribute value, including the one in the
example. After having the data, the solution designer is ready to define the KPI related to this
combination.

• What is your desired outcome?
o Detect with a minimum value of 60% all labels except train and truck. These 2 are not

important because both are not allowed in residential areas.
• Why does this outcome matter?

o It is important to achieve ASIL D and avoid any health problem from failure detection.
• How are you going to measure progress?

o Using Accuracy of detecting objects and Surprise Adequacy.
• How can you influence the outcome?

o Adding images of specific labels and attributes that are low. For this purpose, we will use
augmentation data. In this case, with the augmentation, we only found 21 more images
that shares residential and foggy attributes. It is possible to force the augmentation
mechanism and obtain more of these images.

o Additionally, we can include more images if we use image processor applications to
modify the current images in the dataset and add the modified ones to the dataset.

o In case of bad images, such as, images impossible to see anything, we can remove those
images because they have too bad accuracy (<30%) and they only add noise to the training
process.

o Train individual detection model to work only with residential and/or foggy situations.
• How will you know you’ve achieved your outcome?

o when the augmentation of images is achieved
o When the increment of accuracy is better than 60% in all labels or at least in almost all of

them.
o Check the detection model trained using images from other datasets, such as NuScene.

• How often will you review progress towards the outcome?
o Every time a new KPI is check it.
o If a new group of images with residential + foggy attribute from outside the dataset is

used for inference and one of the labels (except truck and train) obtains lower accuracy
than 60%

With these questions answered, the KPI of residential and foggy combination is defined and it can be used
for the solution designer or/and anyone that want to achieve robustness in BDD100k. In the future, all
KPIs definition will be tested in other dataset to check how well it performs. In case the KPIs will need to
be updated, they will be.

Glossary:
Below is a list of technical terminology from the protocol that is described in the following section.

For definitions not mentioned here, section 2.3 of the MLQM guideline can be checked.

a) object detection - The task of Identifying the presence and location of an object in an image.

b) annotation - A set of ground-truth data identifying the area, location, and type (class) of an object in a
given image; usually given as a rectangle enclosing the object (bounding box) and a label.

c) dataset - A set of images and annotations used to train and validate a machine learning algorithm.

d) training - The process of teaching a model to detect objects by iteratively providing it with images and
annotations from a subset of the dataset and correcting its parameters to improve results.

e) validation - The process of evaluating the ability of a model to detect objects on a portion of the dataset
that has not been seen during training. 7

f) IoU (intersection over union) - Also known as Jaccard index, IoU is the ratio between the size of the
intersection of two sets and the size of their union. In the context of object detection, it measures the
accuracy, in terms of location and size, of a predicted region with respect to a human-annotated region
of interest.

g) confusion matrix - A matrix reporting the number of True Positives (TP, existing predictions with
corresponding ground-truth objects), False Positives (FP, existing predictions without corresponding
ground-truth objects), and False Negatives (FN, non-existing predictions for existing ground-truth objects).

h) precision and recall - Two measures of the object detection accuracy of a machine learning algorithm;
defined from the confusion matrix. Here, Precision = 𝑇𝑇𝑇𝑇(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) and Recall = 𝑇𝑇𝑇𝑇(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁).

i) mAP (mean average precision) - A measure of object detection performance; given an IoU threshold, it
is calculated as the mean of the average precision values for all classes of objects in the evaluation dataset,
computed for predictions with IoU above the threshold. Average precision for all detections is the area
under the precision vs. recall curve.

j) FPS (frames per second) - The number of images that a machine learning algorithm can evaluate in one
second.

k) KPI (key performance indicator) - A specific target mAP that should be achieved by a machine learning
algorithm.

l) contender model - A machine learning algorithm that is being considered as an object detection method
for an automated driving system.

m) reference model - A machine learning algorithm that is a state-of-the-art object detection method.

n) candidate model - A machine learning algorithm selected for development from a set of contender
models.

Appendix:

Automotive Safety Integrity Level (ASIL):
ASIL may be similarly expressed as

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 ∗ 𝐶𝐶𝐸𝐸𝐶𝐶𝑆𝑆𝑆𝑆𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑦𝑦)

Severity Classifications (S):

• S0 No Injuries
• S1 Light to moderate injuries
• S2 Severe to life-threatening (survival probable) injuries
• S3 Life-threatening (survival uncertain) to fatal injuries

Exposure Classifications (E):

• E0 Incredibly unlikely
• E1 Very low probability (injury could happen only in rare operating conditions)
• E2 Low probability
• E3 Medium probability
• E4 High probability (injury could happen under most operating conditions)

Controllability Classifications (C):

• C0 Controllable in general
• C1 Simply controllable

• C2 Normally controllable (most drivers could act to prevent injury)
• C3 Difficult to control or uncontrollable

References
Bochkovskiy, A. a.-Y.-Y. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint

arXiv:2004.10934.

Caesar, H. a. (2019). nuScenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027.

He, K. a. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on
computer vision and pattern recognition, 770--778.

Howard, A. G. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv.

Jocher, G. a. (2021). ultralytics/yolov5: v4.0 - nn.SiLU() activations, Weights \& Biases logging, PyTorch
Hub integration. Zenodo.

Liu, S. a. (2019). Learning spatial fusion for single-shot object detection. arXiv preprint arXiv:1911.09516.

Redmon, J. a. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.

Ren, S. a. (2016). Faster R-CNN: towards real-time object detection with region proposal networks. IEEE
transactions on pattern analysis and machine intelligence, 1137--1149.

Sandler, M. a. (2019). MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv.

Simonyan, K. a. (2014). Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.

Szegedy, C. a. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE
conference on computer vision and pattern recognition, 2818--2826.

Tan, M. a. (2020). Efficientdet: Scalable and efficient object detection. Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 10781--10790.

Yu, F. a. (2020). BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Yu, F. a. (2021, 2 22). Retrieved from https://github.com/bdd100k/bdd100k

Zhao, Q. a. (2019). M2det: A single-shot object detector based on multi-level feature pyramid network.
Proceedings of the AAAI conference on artificial intelligence, 9259--9266.

1

Reference for machine learning based Vision Inspection

Contents
1 Purpose and background .. 3

2 Expected outcomes .. 3

3 Author’s role .. 3

4 Introduction of possible datasets ... 3

5 Quality assurance procedures using AIQM guideline ... 5

5.1 Sufficiency of requirements analysis ... 5

 General definition ... 5

 Contents in vision inspection .. 6

 Possible approaches and experiments .. 6

 Quality level requirement ... 11

5.2 Sufficiency of data design .. 12

 General definition ... 12

 Contents in vision inspection .. 12

 Possible approaches and experiments .. 12

 Quality level requirement ... 18

5.3 Coverage of dataset .. 18

 General definition ... 18

 Contents in vision inspection .. 19

 Possible approaches and experiments .. 19

 Quality level requirement ... 21

5.4 Uniformity of dataset ... 22

 General definition ... 22

 Contents in vision inspection .. 22

 Possible approaches and experiments .. 23

 Quality level requirement ... 28

5.5 Correctness of the trained model .. 28

 General definition ... 28

 Contents in vision inspection .. 28

2

 Possible approaches and experiments .. 28

 Quality level requirement ... 32

5.6 Stability of the trained model ... 33

 General definition ... 33

 Contents in vision inspection .. 33

 Possible approaches and experiments .. 33

 Quality level requirement ... 38

5.7 Dependability of underlying software system .. 38

 General definition ... 38

 Contents in vision inspection .. 38

 Possible approaches .. 38

 Quality level requirement ... 39

5.8 Maintainability of quality during operation ... 39

 General definition ... 40

 Contents and possible approaches .. 40

 Quality level requirement ... 42

3

1 Purpose and background
In manufacturing factories, the vision inspection is a significantly meaningful topic. Defects

are an unwanted thing, especially on the appearance of products or parts. For removing this
defective product all industry have their quality inspection department. But the main problem
is this inspection process is carried out manually. It is a very time-consuming process and
due to human accuracy, this is not 100% accurate. This can because of the rejection of the
whole order. So it creates a big loss in the company. Therefore, there is a growing need for
using machine-learning based methodology for the automated inspection. Here, the goal of
this report is to create an example implementation to demonstrate how the Artificial
Intelligence Quality Management (AIQM) guideline can be used to assess interior properties
of AI models on vision inspection. Here we will discuss about vision inspection problem
based on some publicly available industrial datasets. This report can be used as a reference
document for other vision inspection applications involving evaluation of AI based systems.

2 Expected outcomes
In this reference, the following outcomes are expected to be achieved via applying the

AIQM guideline on vision inspection applications

- Procedures of quality control referring to vision inspection tasks.
- Methodology on AI modeling and testing on vision inspection
- Useful AI algorithms and KPIs in vision inspection applications
- Reference on AI quality assurance for machine-learning based systems in vision

inspection

3 Author’s role
Here, we play as a ’service developer’. We consider the guideline as a ‘technical starting

point’ for developing the service in vision inspection. The essential intention of this report is
to introduce a total investigation of the vision inspection issue and answer for it as indicated
by the predefined AIQM appraisal standards. As a creator of this model issue, our objective
will investigate each part of it and attempt to arrange them on the characterized structure of
the rule. It will help us to analyze the vision inspection problem and finding some incite from
this problem. We follow the guideline from early development stage to ensure quality
standards are maintained throughout the process.

4 Introduction of possible datasets
There are a number of vision inspection applications in real world, which could usually

provide the public usage in website. Here, the report presents brief description of two datasets
in hand for vision inspection, as well as some example samples as below

4

 Example dataset 1

Magnetic Tile Defect dataset (https://github.com/abin24/Magnetic-tile-defect-datasets) is
one dataset used for defect detection, and its related AI model training and evaluation are
also discussed. The Magnetic Tile Defect dataset contains totally 2,688 static images, as
shown in Figure 4.1. For each image, its category label and the region of defect are both
provided, and the defect regions are shown in images named as GroundTruth "GT" in Figure
4.1.

Figure 4.1. Examples of Magnetic Tile Defect data

In Figure 4.1, there are totally 6 categories assigned, including “Blowhole” (230), “Crack”
(114), "Break" (170), "Fray" (64), "Uneven" (206), and "Free" (1904). Among them, only
the images belonging to "Free" are normal, and the images belonging to the other five
categories are determined as defect data.

• Example dataset 2

Casting defect is an undesired irregularity in a metal casting process.
There are many types of defect in casting like blow holes, pinholes, burr, shrinkage defects,
mould material defects, pouring metal defects, metallurgical defects, etc. The Casting Defect
data is from Kaggle (https://www.kaggle.com/ravirajsinh45/real-life-industrial-dataset-of-
casting-product). The dataset contains total 7,348 image data. These all photos are top view
of submersible pump impeller, and with the size of (300*300) pixels grey-scaled images.
This dataset is already split for training and testing into two folders. Both train and test folder
contains def-front and ok-front subfolders, as below

train:- 3758 images def-front and 2875 images ok-front

https://github.com/abin24/Magnetic-tile-defect-datasets
https://www.kaggle.com/ravirajsinh45/real-life-industrial-dataset-of-casting-product
https://www.kaggle.com/ravirajsinh45/real-life-industrial-dataset-of-casting-product

5

test:- 453 images def-front and 262 images ok-front

Figure 4.2. Examples of Casting Defect data

5 Quality assurance procedures using AIQM guideline
After initial investigation of these current datasets, the report explores eight internal

properties in quality management of AI models for vision inspection applications, as
mentioned in the AIQM guideline.

5.1 Sufficiency of requirements analysis
 General definition
 What is meaning of this specific AI quality?

 “Sufficiency of requirements analysis” means that usages of a target machine learning based
system are analyzed sufficiently and every requirements for the system is captured
(described in Section 1.7.1).

 Requirements analysis is important especially in the early stage of development of a
conventional software which is used for a safety application. The main purpose of
requirements analysis for the development of machine learning based systems in this
guideline are as follows.

① Sufficient identification of cases in which risk management is needed, mainly in
applications required “safety”.

② Sufficient identification of attributes of objects for which inequality is not allowed,
mainly in applications required “Fairness”.

③ Sufficient analysis of real world in order to verify that training datasets and test
datasets are comprehensive and appropriate extractions of the real world, to all
requirements including “AI performance”.

 “Sufficiency of requirement analysis” is always required not only for machine learning
based systems but also equipment and services controlled by software.

6

 Contents in vision inspection
 What should be done for the developer in the evaluation process

• Problem formulation;
• Problem domain definition;
• Problem evaluation;

According to the general definitions of “sufficiency of requirement analysis”, in vision
inspection applications, the requirements can be materialized to several aspects, for example,
from the perspective of algorithm and structures, it requires to figure out suitable machine
learning algorithms/ structure for vision inspection problem, and that the constructed vision
inspection AI systems should be executed in real world situations; from the perspective of
data, it requires the definition of vision inspection problem domain, data coverage to all
possible situations, and definition of high-risk cases; from the perspective of execution, the
requirement of setting KPIs is also needed at the PoC phase.

 Possible approaches and experiments

The two goals of this internal quality aspects described in this paragraph are

- Clarifying what is required for machine learning components; and
- Clarifying the limited scope which machine learning components have to deal with.

Combining the definition of “sufficiency of requirement analysis”, the detailed contents in
vision inspection for requirement analysis can include the following aspects.

5.1.3.1 Product specification
 This paragraph should include requirements from development entrusted for the machine

learning based vision inspection systems (products). These requirements can be stated from
the technical requirements in details:

• Type of learning: Supervised learning

• Machine learning components: Segmentation, Classification

• Available AI models: UNet, VAE, Fast RCNN, CNN, MLP, ResNet and etc.

• Task to perform: Defects detection and classification

• KPI specifications: Precision, Recall, Accuracy, and etc.

 Example 1

7

If taking the Magnetic Tile Defect data for vision inspection, the related problem can
involve segmentation and classification. This detailed machine learning components is
depended on the selection of data used in modeling. That is to say, the final machine learning
based systems can be determined based on the requirements of product.

For example, if taking the original defect images as the inputs, and the groundtruth images
as the outputs, a segmentation model for detecting defects in magnetic tile images can be
constructed. The selected machine learning model can be chosen as UNet, VAE, R-CNN and
etc.

If taking original defect images as the inputs, and the defect types as the outputs, a
classification model for recognizing the defect types of magnetic tile defect images can be
constructed. The selected machine learning model can be traditional CNN models, VGG or
others.

Then, the KPIs like Precision, Recall and Accuracy can be used to evaluate the performance
of constructed machine learning based models in Magnetic Tile Defect detection.

 Example 2

If taking the Casting Defect data for vision inspection, the related problem only involve

classification. Since the dataset contains only two categories of images, such as defect and
normal data, it is a standard binary classification problem. Therefore, the general
classification model like CNN, MLP, ResNet and etc. can be applied for vision inspection on
Casting Defect data. The KPIs like Precision, Recall and Accuracy are also useful for
evaluating the constructed AI models’ performance.

5.1.3.2 Problem domain

If product specification describe the requirements on model/algorithm selection in machine
learning based vision inspection systems, the problem domain describe the requirements on
data selection.

• Problem domain design

Inspired from the guideline, the final machine learning based systems are required to be
applied in vision inspection for all possible situations. Actually, these situations can be
described by some characteristics in natural language, also called ‘attributes’ in the document.
Based on these description attributes, we can envision a concept of feature tree according to
their corresponding ‘attribute values’, then define a problem domain describing all of these
situation involved in vision inspection. The term used here as ‘attribute’ and ‘attribute values’
carries the same meaning and significance as defined in section 6.1.2.1 of the guideline.

8

 Example 1

Taking the Magnetic Tile Defect data for example, we can declare some attribute

requirements to design the vision inspection problem domain. Attributes and attribute values
can be defined from the following points of view

- Defect type: Blowhole, Crack, Break, Fray, Uneven, Free
- Light intensity: strong, medium, weak
- Reflection strength: strong, medium, weak

According to the above requirements, we can present some results for showing this problem
domain

Type Blowhole Break Crack Fray Uneven Free
Imag

e

115 85 57 32 103 952
Figure 5.1.1. Images and number of each defect type in the dataset

Moreover, the light intensity can be represented by transforming the RGB format images
into HSL format images where the value of L represents the lightness/brightness, as shown
in Figure 5.1.2(a).

Considering the recognition of reflection strength is not easy, here we can consider another
quality of image, namely image contrast to replace the reflection strength, as shown in Figure
5.1.2(b).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Brightness

0

50

100

150

200

of

 s
am

pl
es

2.4 2.5 2.6 2.7 2.8 2.9

Contrast 10 4

0

100

200

300

400

500

of

 s
am

pl
es

9

(a) (b)

Figure 5.1.2. Domain of two description attributes. (a) light intensity (Brightness); (b)
reflection strength (Contrast).

Since the values of brightness and contrast are continuous, then we can give thresholds to
divide their domain into three parts according to real vision inspection requirements, and
corresponding to the strong, medium, weak cases of light intensity and reflection strength
respectively.

 Example 2

If taking the Casting Defect data for example, we can also declare similar attribute
requirements as the following points

- Type: Defect, Free
- Brightness: strong, medium, weak
- Contrast: strong, medium, weak
- Exposure fusion: strong, medium, weak

Considering the Casting Defect data has only two types, such as defect and free images,
here we can describe its problem domain with similar attributes like brightness, contrast and
an additional attribute exposure fusion. The domain of these attributes are shown in Figure
5.1.3.

 (a) (b) (c)

Figure 5.1.3. Domain of attributes for the Casting Defect data. (a) Brightness; (b) Contrast;
(c) Exposure fusion.

Similarly, three attributes in Figure 5.1.3 are continuous, so we can design their domain for
vision inspection requirement analysis, as presented in the following table. Meanwhile, with
suitable thresholds, we can divide them into strong, medium and weak cases for vision
inspection problem description.

Table 5.1.1. Problem domain of the given attributes

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

Brightness (train)

0

100

200

300

400

500

600

0.36 0.38 0.4 0.42 0.44 0.46 0.48

Contrast (train)

0

100

200

300

400

500

600

0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

0

50

100

150

200

250

300

350

400

450

500

10

Attribute Brightness Contrast Exposure
fusion

Domain 0.4~0.7 0~0.5 0.2~0.7

• Data type requirements
- Type of inputs for AI modeling
- Type of attributes for problem domain description

Furthermore, data type is also an important requirement for machine learning data. The first

item is the type of inputs for AI modeling. Different with attributes for problem domain
description, the inputs for AI modeling should have concrete values and types (discrete or
continuous).

- For example, the AI based vision inspection system for the Magnetic Tile Defect
data, it requires inputs are 3- channels RGB format images, the targets should be 1-
channel binary format groundtruth images and discrete defect type labels.

- For the vision inspection system for the Casting Defect data, it requires inputs are
1-channel grey format images, the targets are binary class labels representing defect
or not.

The second item is the type of attributes for problem domain description. This requirement
is more general, both discrete and continuous values are acceptable. Usually, discrete values
are more suitable to describe problem domain’s natural characteristics, e.g. strong light
intensity, weak reflection and so on.

5.1.3.3 KPI requirements at the POC Phase

Furthermore, in the POC (Proof of concept) trial phase, usually the developers could
propose some KPI requirements for the constructed machine learning based vision inspection
systems. These KPIs can be expected from perspectives of models, data and performance.
For example, taking the Magnetic Tile data for vision inspection, the following policies can
been formulated by the developers.

- The inputs should contain only those whose images has been identified as "Crack",
"Break", "Fray", "Uneven" and "Free", and that images belonging to "Blowhole"
will not be used.

- The training dataset consists of 1230 images, or about 50% of each image in the
above categories, and the test dataset consists of 245 images, or about 10% of each
image in the above categories.

- The Variational Auto Encoder (VAE) model can be considered as its learning tool.

11

- As a completion condition of the POC trial phase, we defined Precision and Recall
to achieve 0.7 or greater for each of the test data sets.

According to these requirements, some experiments based on the constructed vision
inspection model are implemented. First, by taking 50% of data for training, namely 672
samples, and 10% of data for testing, namely 134 samples, the performance of testing data is
shown below

Table 5.1.2 Results of Precision and Recall of testing data

(%) Blowhole Break Crack Fray Free Uneven
Precision 72.73 83.33 100 100 92 90.91

Recall 72.73 83.33 62.5 50 97.87 76.92

It is seen that two cases are not satisfied the requirement that Precision and Recall values
should exceed 70%.

On the other hand, by setting 70% of data as training data, namely 940 samples, 20% of
data for testing, namely 268 samples. The performance of testing data on the trained model
is shown below

Table 5.1.3 Results of Precision and Recall of testing data

(%) Blowhole Break Crack Fray Free Uneven
Precision 94.74 85 100 83.33 93.88 100

Recall 81.82 80.95 80 100 98.40 83.33

Conclusion: With more data for training and testing, the precision and recall can be
improved, exceeding 70% on all cases, satisfying the requirements in the POC phase.

 Quality level requirement
 “Safety”: AISL 0.1
 “AI performance”: AIPL 1
 “Fairness”: AIFL 1

The requirements need to satisfy the Lv1 quality level, as follows

• Examine and record the cause of major risks of quality deterioration.
• Based on the examination results, design data and reflect it in necessary attributes.

12

5.2 Sufficiency of data design
 General definition
 What is meaning of this specific AI quality?

On the premise of the sufficiency of problem domain analysis, sufficient examinations of
data design to collect and sort out sufficient training data and test data are required as
“sufficiency of data design” in response to various situations which systems have to respond
to.

 In an extremely-simple system, it is enough to mention that corresponding data to all
“combinations of situations” identified in the problem domain analysis described in the
previous section included in training datasets and test datasets. However, if a situation in
which a system is envisioned to be used is complex, the number of possible combinations
becomes enormous. Therefore, it is not practical to cover all combinations with datasets.

 Contents in vision inspection
 What should be done for the developer in the evaluation process

• Combination analysis;
• Case soundness analysis;
• Specific cases;

For vision inspection applications, the quality “sufficiency of data design” involves three
aspects. For example, firstly it involves the combinations design which is on the basis of
described vision inspection in the previous section. The combinations are realized by
attributes, and lead to cases (situations) division for quality assurance. Secondly, this quality
also involves the soundness of cases, which is directly related to the amount of data samples
in each case. If a case has few samples, it may be regarded as unsound in vision inspection.
Finally, this quality deals with the analysis of high-risk cases, e.g. data samples in special
situations may lead to incorrect defect recognitions or false defect detection.

 Possible approaches and experiments
According to the definitions of the quality “sufficiency of data design”, we can figure out

some related contents and techniques for vision inspection, such as data augmentation to
guarantee the combination analysis, attribute combination and case division, risk cases and
related analysis.

5.2.3.1 Data augmentation
In order to secure sufficient training data and test data with respect to various situations, the

vision inspection systems requires to respond to enough amount of data in the defined
problem domain.

13

For example, in the vision inspection application based on the Magnetic Tile data, the low
amount of samples is a key problem affecting the performance. Instead of collecting data
from real scenarios, data augmentation is an available technique to satisfy the quality analysis
of “sufficiency of data design”. Here, on the basis of the first AI quality analysis on problem
domain requirement, it will be possible for the designers to generate some realistic data for
vision inspection. Firstly, we need to explore the problem domain of the original Magnetic
Tile data.

exp1_num_3667 exp2_num_3696

exp3_num_3710 exp4_num_3724

exp5_num_3746 exp6_num_3789

14

Figure 5.2.1 Examples from the original dataset

For example, Figure 5.2.1 shows some real image from the original dataset. It is found that
six figures in class of Blowhole are actually collected from one object, but with different
description attribute, namely the brightness. This phenomenon implies that it is meaningful
to create some new images on the given problem domain. For example, given a sample, then
changing its description attribute within the problem domain, the new generated samples will
certainly belongs to the problem domain for vision inspection. Here, we apply four kinds of
transformation to generate realistic data in the problem domain of the Magnetic Tile Defect
data, such as rotation, transpose, and brightness adjustment to realize data augmentation.

Figure 5.2.2 Examples of data augmentation

15

 The above show images generated based on a given blowhole defect image, which are
transformed by 45o rotation, horizontal flip, vertical flip and brightness adjustment in the
given problem domain. Similarly, all original images can be used to generate new realistic
samples. By implementing the same transformation as the above, totally 5376 new images
are generated, their distribution are presented as below

Table 5.2.4. Data distribution after data augmentation

Type Blowhole Break Crack Fray Uneven Free
575 425 285 160 515 4760

5.2.3.2 Attribute combination and case division

The second content in the study of “sufficiency of data design” could be the design of data
cases based on attribute combinations. As we know, the problem domain of vision inspection
applications is constructed based on some description attributes. However, not all of values
on each attribute are reasonable, moreover the combination of two attribute values may be
also unreasonable even though these values reasonably belong to their attribute domain. For
example, the Magnetic Tile Defect data, the "Blowhole" images may be excluded in the PoC
phase since its defect regions are too small compared with images of other defect types. In
this way, analysis on case division and attribute combination is required in this stage.

For example, taking the Casting Defect Data for experiments, according to the distribution

of attributes in the problem domain design stage, we can design case division in the problem
domain for AI quality assurance.

Assuming we divide the problem domain for each attribute (brightness, contrast, exposure
fusion) as 10 sub-cases. The cases with different attribute combination are summarized as
below.

Table 5.2.5. Case division with different number of attribution combinations

 Amount
One combination: 30 cases
Two combinations: 300 cases
Three combinations: 1000 cases

5.2.3.3 Corner cases/high-risk case
After the design of attribute combination and case division, we can obtain a number of data

cases. Since this case division is actually the reflection of dividing the problem domain, so

16

these cases are more refined in data description. Moreover, we can further find those high-
risk or unsound data region, namely unsound cases on the basis of case division.

• Unsound cases/High-risk cases

It is easily understood, that unsound cases are those should not exist in vision inspection in
the real world. For example, if normalize the values of “brightness” attribute into domain
[0,1], a defect image is possible to be completely dark (brightness=0) or completely bright
(brightness=1). In this case, this image is unsound. Moreover, with pair-wise attribute
combination, too dark or too brightness cases are not possible to have strong contrast, so
these cases are also regarded as unsound cases.

High-risk cases are different with the unsound cases, they are possible to exist in the real
world for vision inspection. For example, in the Magnetic Tile Defect data, the “Blowhole”
defect data is reasonable in the vision inspection, however they may lead to high risk of
incorrect decision-making. Therefore, we can regard them as high-risk cases, and may be
excluded in the PoC phase.

 Example 1

Here, taking the Magnetic Tile data for example, if we take two attributes “defect type” and
“brightness” for pair-wise analysis, we first can divide the original data into different cases.
By setting the threshold of brightness as 0.3 and 0.6, the brightness domain can be divided
into 3 cases, and multiple 6 classes of defect types. There as totally 18 cases. Results are
presented below

Table 5.2.6. Case division and soundness analysis

According to this division, the cases of Crack defect with strong brightness, and Fray defect
with strong brightness seem not sound, since they have very low amount for training and
testing.

Moreover, with more attribute combinations, we can also count the unsound cases which
has no images, or define high-risk cases based on given threshold. Meanwhile, by setting a
given accuracy threshold, we can calculated the number of valid cases and the valid ratio, as
shown in the table.

Table 5.2.7. Unsound cases in the Magnetic Tile data

brightness Blowhole Break Crack Fray Uneven Free
Weak(<0.3) 21 13 12 11 18 188

Medium(0.3~0.6) 81 61 39 19 67 661
Strong(>0.6) 13 11 6 2 18 103

17

 Unsound
cases (#=0)

of cases
(Acc>=0.97)

valid
coverage

(Acc>=0.97)

valid
coverage

(Acc>=0.96)
Com1 3/30 18/30 0.6667 0.8148(22)
Com2 170/300 94/300 0.7231 0.8077(105)
Com3 895/1000 79/1000 0.7524 0.7905(83)

• Corner case data detection

As well as the execution of traditional software, a dangerous condition in AI system testing
is processing data of corner cases which generally cause incorrect and unexpected behaviors.
For example, when DL-based autonomous driving system processes corner cases of rainy
weather or strong reflection, an incorrect decision may be made to lead to crash bringing the
loss of life and property. Therefore, detecting corner-case samples is important in AI testing.
According to the above description of corner case, we can define the corner case set as the
following

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶 𝑐𝑐𝐶𝐶𝑠𝑠: {𝑥𝑥| 𝐷𝐷𝐷𝐷(𝑥𝑥 + 𝑝𝑝𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑠𝑠𝑝𝑝𝐶𝐶𝐶𝐶) ≠ 𝑙𝑙𝑐𝑐𝑝𝑝𝐶𝐶𝑙𝑙(𝑥𝑥)}

Where, x is denoted as a sample in corner case; its true label is denoted as label(x); DL(*)
is the output class based on a given DL model. Through this definition, we see when a small
perturbation is added into a corner-case data x, where |𝑝𝑝𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑠𝑠𝑝𝑝𝐶𝐶𝐶𝐶| < 𝜀𝜀 and 𝜀𝜀 > 0 is a
small value, the class recognized by DL system will be different with its true label. In this
way, corner case set can include data samples with both incorrect and unexpected behaviors,
e.g. boundary adversarial data and incorrectly classified data (outliers), as shown in Figure
5.2.3

Figure 5.2.3. Diagram of corner case. Two class of data are colored as blue and red. Data
of corner case is colored as green, which includes incorrectly classified data as well as data
close to classification boundary which is sensitive to cause unexpected recognition.

 Example

18

By taking the Casting Defect data as an example, we can apply some corner case descriptors
to detect the corner case data in the original data. For example, here a general CNN model
with 2 convolutional layers and 2 full-connection layers is constructed for vision inspection.
After modeling and training, the final testing accuracy can reach 97.90% on this casting data.
Then, applying distance-based surprise adequacy (DSA) as the corner case descriptors,
corner case data detection in the original data is implemented.

(a) (b) (c)

Figure 5.2.4. ROC curves of using DSAs on corner case data detection.

 Quality level requirement
 “Safety”: AISL 0.1
 “AI performance”: AIPL 1
 “Fairness”: AIFL 1

The requirements need to satisfy the Lv1 quality level, as follows

• Set cases for each of attributes corresponding to major risk factors.
• Set cases corresponding to combinations of composite risk factors.
• Extract attributes of differences in particularly-important environmental factors

5.3 Coverage of dataset

 General definition
 What is meaning of this specific AI quality?

The term “coverage of datasets” means that a sufficient amount of data is given to cases
covered by establishing the standards without any part being missed or overlooked in
response to possible input corresponding to those cases.

When conventional software is developed, the details of all characteristics in real world
which software operations depend on are captured at any stage from the machine learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TP
R

DSA0

DSA1

DSA2

DSA3

Random Guess

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TP
R

DSA0

DSA1

DSA2

DSA3

Random Guess

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TP
R

DSA0

DSA1

DSA2

DSA3

Random Guess

19

problem domain analysis phase to the implementation phase and reflected in software
components in the form of conditional branching or calculation formula.

 Contents in vision inspection
 What should be done for the developer in the evaluation process

• Training and testing data coverage;
• Case coverage;

When constructing a machine learning based vision inspection system, coverage of data
contains two perspectives, such as training data coverage and testing data coverage.
According to the general coverage definition, training data coverage aims to guarantee
enough data in the problem domain for training, and that no inappropriate learning behavior
occurs in vision inspection process due to lack of data. The purpose of testing data coverage
aims at to evaluate the behaviors of the constructed vision inspection systems in the problem
domain as completely as possible.

 Possible approaches and experiments
According to the definition of “coverage of dataset”, the main purpose of this quality is to

guarantee the enough data cover the whole problem domain designed for vision inspection.
Therefore, several possible coverage metrics can be applied to analysis.

5.3.3.1 Data coverage
Directly from the coverage definition, it is easily to define a simple coverage metric from

the data amount. Since data coverage initially describes the amount and diversity of data in
problem domain. If case division divide the whole problem domain of vision inspection into
refined small cases with attribute combinations, then these cases can reflect the diversity of
attributes, as well as the diversity of data domain. Then, data amount or data percentage can
be easily transferred for describing coverage.

5.3.3.2 Attribute coverage
The other possible coverage metric can be defined from the attributes used in problem

domain. In this way, we could use the values of the attribute to characterize the data’s
behaviors. Since the internal logic of a DNN is mostly programmed by data, intuitively, the
statistical distribution of original data is very important. The coverage of each feature has
great influence on the final output of a DNN model, as well as the corner-cases whose output
values rarely occur.

For example, given an attribute x(n), the k-multisection coverage measures how thoroughly
the given test data T covers the range [low_n, high_n]. To quantify this, we divide the range
[low_n, high_n] into k equal sections (i.e., k-multi-sections), for k > 0. We write 𝑆𝑆𝑖𝑖𝑛𝑛 to denote
the set of values in the ith section for 1 ≤ i ≤ k.

20

If x(n) ∈𝑆𝑆𝑖𝑖𝑛𝑛, we say the i-th section is covered by the test input x. Therefore, for a given test
set T and the feature x(n), its k-multisection coverage is defined as the ratio of the number of
sections covered by T and the total number of sections, i.e., k in our definition. We define the
k-multisection coverage of a feature n as:

𝐾𝐾𝐾𝐾𝐶𝐶𝐶𝐶𝐾𝐾[𝑥𝑥(𝐶𝐶),𝑘𝑘] =
|{𝑆𝑆𝑖𝑖𝑛𝑛 | ∃𝑥𝑥 ∈ 𝑇𝑇: 𝑥𝑥(𝐶𝐶) ∈ 𝑆𝑆𝑖𝑖𝑛𝑛 }|

𝑘𝑘

Then, we further define the k-multisection coverage of the test set T as:

𝐾𝐾𝐾𝐾𝐶𝐶𝐶𝐶𝐾𝐾[𝑇𝑇,𝑘𝑘] =
∑ |{𝑆𝑆𝑖𝑖𝑛𝑛 | ∃𝑥𝑥 ∈ 𝑇𝑇 ∶ 𝑥𝑥(𝐶𝐶) ∈ 𝑆𝑆𝑖𝑖𝑛𝑛 }|1≤𝑛𝑛≤𝑚𝑚

𝑘𝑘 ∗ 𝑚𝑚

5.3.3.3 Neuron-based coverage
For neuron-based coverage metrics, the basic one is Neuron Coverage (NC) which was first

proposed to drive the generation of artificial inputs. It is simply defined as the percentage of
neurons that were activated by at least one input of the test set.

 For example, assuming D be a trained DL model composed of a set N of neurons. The
neuron coverage of the input x w.r.t. D is given by

𝑁𝑁𝐶𝐶(𝑥𝑥) =
|{𝐶𝐶 ∈ 𝑁𝑁 | 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝𝐾𝐾𝑐𝑐𝑠𝑠𝐶𝐶 (𝐶𝐶, 𝑥𝑥)}|

|𝑁𝑁 |

where activate (n, x) holds true if and only if n is activated when passing x into D.

This definition determines the coverage of an input independently of the other inputs. One
can instead define the additional neurons covered by x that were not covered during training.

More other neuron-based coverage metrics like K-Multisection Neuron Coverage (KMNC),
Neuron Boundary Coverage (NBC), Neuron Activation Coverage (NAC) and Strong Neuron
Activation Coverage (SNAC) are also described in literature.

5.3.3.4 Surprise coverage
Surprise Coverage (SC) is one kind of new coverage metric which is based on the data’s

surprise. For example, in the literature, distance-based surprise adequacy (DSA) is used to
describe data’s diversity and novelty, and also useful to detect corner case data. Therefore,
here we use bucketing to discretize the value space of surprise and define the Distance-based
Surprise Coverage (DSC). Given an upper bound of U, and buckets 𝐵𝐵 = {𝑝𝑝1, 𝑝𝑝2, …𝑝𝑝𝑛𝑛} that
divide (0,𝑈𝑈] into n SA segments, SC for a set of inputs X is defined as follows:

𝑆𝑆𝐶𝐶(𝑋𝑋) =
� {𝑝𝑝𝑖𝑖|∃𝑥𝑥 ∈ 𝑋𝑋 ∶ 𝑆𝑆𝑆𝑆(𝑥𝑥) ∈ �𝑈𝑈 ∙ 𝑝𝑝 − 1

𝐶𝐶 ,𝑈𝑈 ∙ 𝑝𝑝𝐶𝐶�}�
𝐶𝐶

A set of inputs with high SC is a diverse set of inputs ranging from similar to those seen

during training (i.e., low SA) to very different from what was seen during training (i.e., high

21

SA). We argue that an input set for a DL system should not only be diversified, but
systematically diversified considering SA. Recent results also validate this notion by showing
that more distant test inputs were more likely to lead to exceptions but might not be as
relevant for testing.

5.3.3.5 Example and experiments

Here, taking the Magnetic Tile data for example, if we take two attributes “defect type” and
“brightness” for pair-wise analysis, we first can divide the original data into different cases.
By setting the threshold of brightness as 0.3 and 0.6, the brightness domain can be divided
into 3 cases, and multiple 6 classes of defect types. There as totally 18 cases. Then, the
coverage of training data can be calculated, as shown below.

Table 5.3.1. Amount of training data in each case

brightness Blowhole Break Crack Fray Free Uneven
Weak(<0.3) 89 47 45 36 852 80
Medium(0.3~0.6) 257 185 142 56 2294 230
Strong(>0.6) 40 22 13 0 272 44

Table 5.3.2. Data coverage of training data

brightness Blowhole Break Crack Fray Free Uneven
Weak(<0.3) 1.89 1.00 0.96 0.77 18.11 1.70
Medium(0.3~0.6) 5.46 3.93 3.02 1.19 48.77 4.89
Strong(>0.6) 0.85 0.47 0.28 0.00 5.78 0.94

Moreover, the amount and coverage of testing data can also be calculate as below

Table 5.3.3. Amount of testing data in each case

brightness Blowhole Break Crack Fray Free Uneven
Weak(<0.3) 30 20 18 12 233 16
Medium(0.3~0.6) 84 69 29 14 647 63
Strong(>0.6) 7 11 3 4 75 9

Table 5.3.4. Data coverage of testing data

brightness Blowhole Break Crack Fray Free Uneven
Weak(<0.3) 2.23 1.49 1.34 0.89 17.34 1.19
Medium(0.3~0.6) 6.25 5.13 2.16 1.04 48.14 4.69
Strong(>0.6) 0.52 0.82 0.22 0.30 5.58 0.67

 Quality level requirement
 “Safety”: AISL 0.1
 “AI performance”: AIPL 1

22

 “Fairness”: AIFL 1

The requirements need to satisfy the Lv1 quality level, as follows

• Examine a source and a method of acquiring test datasets to ensure that no bias is
found in applications.

• Extract samples without bias from original data for each case to ensure that no bias
is found.

• Record activities carried out to prevent bias from entering.
• Check if sufficient training data and test exist for each analyzed case in the training

or validation phase.
• In cases where sufficient training data cannot be acquired for any case, review and

relax the standards for coverage and record what should be checked individually by
system integration tests in line with the original standards.

5.4 Uniformity of dataset

 General definition
 What is meaning of this specific AI quality?

Evaluating only the “coverage of each case” as described earlier does not always mean that
all datasets are good sampling of the overall environment expressed by input data. When a
probability of occurrence differs significantly from one case to another, datasets with big bias
are generated only by preparing samples separately for different cases, and performance may
be compromised particularly from the viewpoint of AI performance. On the other hand, when
performance is required for rare cases whose probability of occurrence is very low, it is
impossible to balance the preparation of the practical amount of even data without bias for
all input and the preparation of the sufficient amount of data for rare cases. Therefore, the
quality “uniformity of data” is also important, which is to make an appropriate compromise
contrary to the data coverage described above.

 Contents in vision inspection
 What should be done for the developer in the evaluation process

• Evenness between data;
• Evenness between cases;

According to the above general description, we can see that in vision inspection applications,
we need to not only prepare sufficient training data for combinations of attribute values with
risks which should be avoided by making correct judgments when risk avoidance is strongly
sought, but also require uniformity strongly which means “the same level of training should
be given to all cases artificially or all cases are trained randomly in line with the distribution
of extracted training datasets”.

23

 Possible approaches and experiments
5.4.3.1 Evenness between real data and collected data

While, we have known that the uniformity of data actually means the evenness of data, the
natural evenness description is to compare the difference between natural distribution and
collected data distribution. For example, taking the Casting Defect data in this study and the
brightness attribute for evenness analysis, our natural knowledge is most of images are
collected in moderate light scenarios, a few collected in dark or bright scenarios. Therefore,
the natural brightness domain may abide by the Normal distribution. While, from the
distribution of brightness on the collected casting defect images, it is seen that the domain
locates in a small range nearly from 0.4 to 0.7, that dark and bright images are indeed not too
much, but there exits faultage in the medium brightness zone to destroy the Normal
distribution, as shown in the following figure.

Figure. 5.4.1 Distribution of brightness attribute in casting data.

5.4.3.2 Evenness between training and testing sets
The other evenness metric considering the difference between training data and testing data.

For example, with respect to the description attributes of problem domain, what is the
relationship between the difference/evenness of data with AI performance.

 Example 1

Taking the Magnetic Tile data as example, with the division on defect types, we can see the
coverage of all kinds of defect types are the same in both training and testing set, which
implies the evenness is guaranteed in AI quality assurance.

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

Brightness (train)

0

100

200

300

400

500

600

24

Figure 5.4.2. Coverage distribution on defect types

Then, we can calculate the distribution of Precision and Recall values of training and testing
within different types of defects. Where, Recall metric represents the same meaning of
classification accuracy.

Figure 5.4.3. AI performance on each defect type

It is seen that in this training and testing division (evenness), metrics (e.g. Precision and
recall) can also keep even in training and testing.

 Example 2

Moreover, taking the Casting Defect Data as an example, we can also take the most
common description attributes of image as example, (image brightness and contrast), and get
the distribution of these two attributes on both training and testing datasets.

25

Figure. 5.4.4 Distribution of attributes in training and testing

It is seen that the distribution of attributes in training and testing are also uniform, which
also make the final machine learning based vision inspection system achieve similar
performance.

5.4.3.3 Evenness between different cases
On the other hand, the uniformity of data requires to guarantee the sufficient amount of data

for high-risk cases, which also means the evenness on different cases. For example, as we
know, imbalance is always an important factor affecting the performance of classification
applications. While, vision inspection problems usually involve classification, and the
collected defect data from the real world is generally imbalanced, e.g. different defect types
in the Magnetic Tile data. Moreover, as the division of cases representing different scenarios,
the imbalance on different cases also happens commonly. Therefore, it is also necessary to
guarantee AI quality via the evenness between different cases.

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

Brightness (train)

0

100

200

300

400

500

600

0.36 0.38 0.4 0.42 0.44 0.46 0.48

Contrast (train)

0

100

200

300

400

500

600

0.5 0.52 0.54 0.56 0.58 0.6 0.62

brightness (test)

0

20

40

60

80

100

120

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

contrast (test)

0

20

40

60

80

100

120

140

26

 Example

Taking the Magnetic Tile Defect data as the example, to realize the comparison study on
uniform and non-uniform coverage in AIQM, here we can consider to sample training data,
and the non-uniform and uniforming sampling for case division is implemented. First, taking
the attribute of brightness as the studied object, the cases (1-weak, 2-medium, 3-strong) are
shown below

Figure 5.4.5. Uniform and non-uniform coverage design

For comparison analysis, we can compare these performance metrics on two different
coverage of training data. Since the testing data keeps unchanged, images with medium
brightness have the largest coverage. Therefore, training data and testing data are even under
the original coverage (1st figure), uneven for the equal coverage of training data.

Figure 5.4.6. Classification accuracy in vision inspection

According to the comparison on accuracy, we can see equal coverage has a little superiority
to the original coverage, not matter from the perspective of comprehensive testing accuracy
(75% vs 74%), or from the perspective of case accuracy in the above figure.

27

Moreover, we can similarly do some comparison analysis on other description attributes,
for example, designing uniform and non-uniform coverage in different defect types, as shown
below

Figure 5.4.7. . Uniform and non-uniform coverage design on defect type

First, the coverage of training and testing data is compared in the above figures. It is seen
that training and testing data are even in the first experiment which has original coverage. In
the second experiment, all defect types has less coverage of testing than that of training data.

Second, according to the training results, the second experiment has a worse comprehensive
accuracy (55%) than that of the first experiment (70%).

Third, we can further analyze AI models’ performance based on results of precision and
recall metrics, as below

Figure 5.4.8. Performance of vision inspection

Comparing performance of precision, it is seen that original coverage and equal coverage
have similar performance, except Fray defect where original coverage outperforms equal
coverage obviously. On the performance of recall, equal coverage outperforms original
coverage, except the free data. While, considering the comprehensive accuracy has tight
relation with values of recall, so the second experiment having low accuracy (55%) is mainly
influenced by the large coverage of free data in testing, as shown in the second figure.

28

 Quality level requirement
 “Safety”: AISL 0.1
 “AI performance”: AIPL 1
 “Fairness”: AIFL 1

The requirements need to satisfy the Lv1 quality level, as follows

• Regarding the amount of data for each case examined in L1 of the previous section,
explicitly check if there is a sufficient amount of data for high-risk cases.

• In cases where data of rare cases is insufficient for training after comparing the
amount of all sets of training data with a probability of occurrence of rare cases,
prioritized learning of rare cases should be examined. However, in cases where Lv
E2 is strongly required, the impact of reduced training of other cases on overall
system quality should be examined.

5.5 Correctness of the trained model
 General definition
 What is meaning of this specific AI quality?

The term “Correctness of the trained model” means that a machine-learning component
reacts to specific input data included in learning datasets (consisting of training data, test data
and validation data) as expected. In addition to numerical behaviors in the training stage such
as convergence, this characteristic includes the non-existence of errors in data used for
training (or the amount of erroneous data is so low that it does not cause any problem).

 Contents in vision inspection
 What should be done for the developer in the evaluation process

• Correctness metrics

According to the above definition, in machine learning based vision inspection systems, the
correctness can be described by the correction detection of defects, as well as the correctness
of defect recognition. In this way, the proposed vision inspection KPIs can be used for AI
quality evaluation in the correctness analysis, e.g. Precision, Recall and Accuracy.

 Possible approaches and experiments
5.5.3.1 General correctness metrics

As we know, the major problem involved in vision inspection is the classification of
different defect types. Then, the general classification evaluation metrics can be transferred
into machine learning based vision inspection systems.

29

The major type metric is based on confusion matrix, which aims at models whose output
format is event or label, e.g. classification, clustering. The confusion matrix is defined as
below

Table 5.5.1 Confusion Matrix

Observed Condition

Observed Positive Observed Negative

Predicted condition Predicted True TP FP
Predicted False FN TN

From the above table, four events are defined, namely true positive events (TP), false
positive events (FP), false negative events (FN), true negative events (TN). According to the
number of these events, several metrics could be defined, including Recall, Precision,
Accuracy and so on. Their definitions are presented as below.

Classification Rate/Accuracy: classification rate or accuracy is given by the relation:

𝑆𝑆𝑐𝑐𝑐𝑐𝑝𝑝𝐶𝐶𝑐𝑐𝑐𝑐𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁

However, there are problems with accuracy. It assumes equal costs for both kinds of errors.
A 99% accuracy can be excellent, good, mediocre, poor or terrible depending upon the
problem.

𝑅𝑅𝐶𝐶𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁

Recall can be defined as the ratio of the total number of correctly classified positive examples
divide to the total number of positive examples. High Recall indicates the class is correctly
recognized (a small number of FN).

𝑇𝑇𝐶𝐶𝐶𝐶𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

To get the value of precision we divide the total number of correctly classified positive
examples by the total number of predicted positive examples. High Precision indicates an
example labelled as positive is indeed positive (a small number of FP).

 High recall, low precision: This means that most of the positive examples are
correctly recognized (low FN) but there are a lot of false positives.

 Low recall, high precision: This shows that we miss a lot of positive examples (high
FN) but those we predict as positive are indeed positive (low FP)

Since we have two measures (Precision and Recall) it helps to have a measurement that
represents both of them. We calculate an F-measure which uses harmonic mean in place of

30

arithmetic mean as it punishes the extreme values more. The F-Measure will always be nearer
to the smaller value of precision or recall.

𝐹𝐹_𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑝𝑝𝐶𝐶𝐶𝐶 =
2 ∗ 𝑅𝑅𝐶𝐶𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 ∗ 𝑇𝑇𝐶𝐶𝐶𝐶𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝐶𝐶𝐶𝐶
𝑅𝑅𝐶𝐶𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 + 𝑇𝑇𝐶𝐶𝐶𝐶𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝐶𝐶𝐶𝐶

 Example 1

Taking the Magnetic Tile Defect data as an example, a general 5 layers CNN model is
constructed for vision inspection on this dataset. After several epochs of training, the train
accuracy of the model on magnetic tile defect images can reach 99.26 %, subsequently, we
can also calculate the confusion matrix results, as below

Table 5.5.2 Confusion matrix on the training data

Moreover, based on the confusion matrix results, we can take the Precision and Recall as
the correctness evaluation metrics, and calculate their values on the training data, as below.

Table 5.5.3. Results of Precision and Recall on training data

(%) Blowhole Break Crack Fray Free Uneven
Precision 100 100 100 100 98.95 100

Recall 96.3 97.67 100 95.45 100 98.08

 Example 2

Moreover, taking the Casting Defect Data as the example, we can analyze the correctness
of different models on vision inspection. As we have discussed in the first quality
“sufficiency of requirements analysis”, the vision inspection based on Casting Defect data is
a standard binary classification problem, so here three classification models, such as CNN,
VGG16 and ResNet34, are applied to construct the vision inspection systems. Their training
parameters are presented in the following table.

Table 5.5.4 Parameters of three models for Casting Defect data

True Predicted Blowhole Break Crack Fray Free Uneven
Blowhole 52 0 0 0 2 0
Break 0 42 0 0 1 0
Crack 0 0 32 0 0 0
Fray 0 0 0 21 1 0
Free 0 0 0 0 469 0
Uneven 0 0 0 0 1 51

31

 Batch Size # of epochs Learning rate Training
Accuracy (%)

CNN 64 10 0.0002 99.17
ResNet34 64 10 0.0002 99.44
VGG16 64 10 0.0002 92.76

In this table, the correctness of AI models are described by the classification accuracy, and
only the training accuracy are presented. Furthermore, we can evaluate these trained models
on the testing data, and study their performance on the correctness quality as the guideline
requirements. Results of correctness analysis are shown below.

Figure 5.5.1 Accuracy of three models on training and testing process.

5.5.3.2 Correctness on corner case data detection

According to the definition of “correctness of the trained model”, we can see this quality
involves not only the evaluation on the correct behaviors, but also the erroneous behaviors.
Therefore, here we can propose a new metric that mainly focus on the evaluation of erroneous
data which is namely the corner case data described in the “sufficiency of data design”. To
quantitatively evaluate the correctness of AI model on corner case data detection, here we
propose a metric as corner-case data coverage as the following form

𝑐𝑐𝐶𝐶𝐾𝐾(𝐾𝐾𝑡𝑡ℎ) =
𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐({𝑐𝑐|𝑐𝑐 ∈ 𝐶𝐶𝐷𝐷, 𝐷𝐷𝑆𝑆𝑆𝑆(𝑐𝑐) > 𝐾𝐾𝑡𝑡ℎ})

|𝐶𝐶𝐷𝐷| × 100%

Where, vth is a given threshold; CD represents the dataset of corner case data; |CD| is the
cardinality; if we consider to use DSA for corner case detection here, {d} represents the set
consisting of all detected corner case data which have DSA values larger than the given
threshold. While, considering not all of data in corner case are detectable, here we only take
the detectable corner-case data into account, namely those data wrongly recognized by DL.

32

In this way, the proposed corner case data coverage is actually to evaluate the percentage of
erroneous behaviors of DL systems, namely the correctness of erroneous data detection.

 Example
Taking the Casting Defect data as an example, a 5-layers CNN model is constructed for this

vision inspection problem. Then, using DSA as the tool for corner case data detection, and
considering the correctness on two convolutional layers and the output layer respectively.
The three layers are also named as Layer1, Layer2, Layer3, the corner case data coverage
(correctness) analysis are presented below.

(a) (b) (c)

Figure 5.5.2. Corner case data coverage variance as the descending DSA. (a) Layer1; (b)
Layer2; (c) Layer3;

In the above figure, when we consider DSAs for detecting the erroneous data in vision
inspection, we can find as the DSA threshold decrease, the correctness of erroneous data
(corner case data) will increase.

 Quality level requirement
 “Safety”: AISL 0.1
 “AI performance”: AIPL 1
 “Fairness”: AIFL 1

The requirements need to satisfy the Lv1 quality level, as follows

• Draw out the necessary amount of test data based on assumptions of PoC and past
experiences and prepare it through the extraction process that satisfies the “coverage
of data”.

• Examine how to eliminate errors and outliers such as labels of test data and
implement and record their results.

• The same principle applies to training dataset. However, another method can be
adopted for how to take data distribution.

0 100 200 300 400 500 600 700 800

Descending DSA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
rn

er
 c

as
e

da
ta

 c
ov

er
ag

e

DSA0

DSA1

DSA2

DSA3

0 100 200 300 400 500 600 700 800

Descending DSA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
co

rn
er

 c
as

e
da

ta
 c

ov
er

ag
e

DSA0

DSA1

DSA2

DSA3

0 100 200 300 400 500 600 700 800

Descending DSA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
rn

er
 c

as
e

da
ta

 c
ov

er
ag

e

DSA0

DSA1

DSA2

DSA3

33

• In cases where a certain level of misjudgment is permitted in the test stage
(including cases where a way of handling is changed based on false negative/false
positive), reasonable standards of judgment should be determined and recorded in
advance.

• In cases where fairness is required, establish means for comparison of fairness in
advance. In cases where it is determined based on comparative test results,
qualifying standards should be established in advanced.

5.6 Stability of the trained model

 General definition
 What is meaning of this specific AI quality?

 The term “stability of a trained model” represents that given an input that is not included
in the learning dataset, a machine learning component behaves in a similar way to when given
a nearest training data as input. When the trained model is not robust enough, it may function
incorrectly upon first seen input, and may violate the safety/security of the system. Therefore,
evaluating stability is important when the system is required to satisfy safety/security.

 Contents in vision inspection
 What should be done for the developer in the evaluation process

• Stability and robustness;
• Robustness measurement and improvement;

Based on the above description, we can see that the stability of machine learning based
vision inspection systems may involve the following issues. First, the adversarial attack will
affect the stability of vision inspection systems. For example, a small amount of noise is
added to a defect image which is input to the trained vision inspection system, but the system
behave significantly differently, namely its stability is destroyed. These noise can be either
random noise in nature (e.g. dirty camera lens) or adversarial perturbation caused by
malicious attacks. Second, the robustness of AI models is also a factor of the vision inspection
systems. For example, when the machine learning based models is overfitting, the
corresponding vision inspection systems can also function sensitively to data in the real world.

 Possible approaches and experiments

As the definition of “stability of a trained model”, the major approach in this quality
assurance is to evaluate the machine learning based vision inspection systems’ robustness.
Therefore, we can introduce the robustness metrics and measurement methodology in vision
inspection.

34

5.6.3.1 Mathematical definition
In software engineering terminology, the standard denotation of robustness is described as:

“The degree to which a system or component can function correctly in the presence of invalid
inputs or stressful environment conditions”, which is similar to the stability description above.
Then, we can translate this definition in mathematical languages as below.

Definition 1 (Robustness). Let S be a machine learning system. Let E(S) be the correctness
of S. Let δ(S) be the machine learning system with perturbations on any machine learning
components such as the data, the learning program, or the framework. The robustness of a
machine learning system is a measurement of the difference between E(S) and E(δ(S)):

𝐶𝐶 = 𝐸𝐸(𝑆𝑆) − 𝐸𝐸(𝛿𝛿 (𝑆𝑆))

Robustness thus measures the resilience of an ML system’s correctness in the presence of
perturbations.

A popular sub-category of robustness is called adversarial robustness. For adversarial
robustness, the perturbations are designed to be hard to detect. Here, local adversarial
robustness and global adversarial robustness are introduced.

Definition 2 (Local Adversarial Robustness). Let x a test input for an ML model h. Let x’
be another test input generated via conducting adversarial perturbation on x. Model h is δ-
local robust at input x if for any x’.

∀𝑥𝑥′: �|𝑥𝑥 − 𝑥𝑥′|�
𝑝𝑝

= 𝛿𝛿 → ℎ(𝑥𝑥) = ℎ(𝑥𝑥′)

�|∙|�
𝑝𝑝
 represents p-norm for distance measurement.

5.6.3.2 Robustness measurement methodology
According to the definition of robustness, robustness measurement is actually the minimum

perturbation causing testing data to make a different decision. In the following Figure 5.6.1
(a), for a linear binary classifier, the minimal perturbation to change the DL model’s decision-
making on a given testing point x0 is the minimum distance from x0 to the hyperplane F,
described as the following form

r∗(x0) = argmin ‖𝐶𝐶‖2
𝑐𝑐. 𝑠𝑠. 𝑐𝑐𝑝𝑝𝑠𝑠𝐶𝐶(𝑓𝑓(𝑥𝑥0 + 𝐶𝐶)) ≠ 𝑐𝑐𝑝𝑝𝑠𝑠𝐶𝐶(𝑓𝑓(𝑥𝑥0))

Similarly, for a multi-classes classifier which is assumed to consist of a set of binary
classifiers, as shown in Figure 5.6.1 (b). The robustness measurement of DL model to x0 can
also be calculated as the minimum distance from x0 to the classification boundary.

Moreover, for an arbitrary classifier which is not linear, the robustness measurement can be
calculated via iteration process. Since, at each step of iteration, the differential part of
classifier can be regarded as linear.

35

Figure 5.6.1 (a). linear binary classifier (b) multi-classes classifier consist of multiple
binary classifiers

5.6.3.3 Robustness measurement with consideration of corner case data
Moreover, considering the stability quality requires to avoid overfitting, so one more useful

application is to consider the corner case data’s influence on the robustness analysis of AI
model. Different with accuracy analysis, here we consider to detect the corner case data in
training data, and deleting detected corner case data for model retraining, as described below.

Figure 5.6.2 Diagram of robustness improvement

In this way, the trained model will be more robust, since it gets rid of the influence of
boundary points (corner case data), and reduce the risk of model overfitting.

5.6.3.4 Experiment results

36

Based on the description on “stability of the trained model” and the provided techniques
/approaches in vision inspection applications, we can design and implement some
experiments to evaluate this quality of machine learning based vision inspection systems.

 Example 1
First, taking the Magnetic Tile Defect data as an example, we can study the influence of

adversarial attack on the stability of vision inspection systems. Here, to generate adversarial
input for the trained AI model, the commonly-used adversarial attack methods, like FGSM,
CW, BIM, applied here. The newly generated defect images are drawn in the following figure.

(a) Original (clean)

(b) FGSM

(c) BIM

37

(d) CW

Figure 5.6.3. Adversarial samples by different methods

Based on the generated adversarial samples as new testing sets, we can calculate its testing
accuracy on defect type recognition. The following table shows that the classification
accuracy of adversarial samples lower too much, and the FGSM adversarial samples work
the worst, implying the trained machine learning based vision inspection system has lowest
robustness to FGSM attacks.

Table 5.6.1. Accuracy of four adversarial testing sets

 Original FGSM BIM CW
Accuracy (%) 97.5446 % 24.0327 % 61.2351 % 72.0238 %

 Example 2

Moreover, taking the Casting Defect data as an example, a general CNN model is
constructed for this vision inspection problem. To measure the robustness of this model, we
can apply the mentioned methodology in section 5.6.2.2 in experiments. Results of
robustness measurement are shown in the following table

Table 5.6.2. Robustness measurement on the casting data

 L1 L2 Lꝏ
Model 1 Min 0.0010 0.0088 0.3115

Max 0.7421 7.0115 264.2126
Mean 0.1890 1.9058 69.4177

Model 2 Min 0.0024 0.0240 0.8842
Max 0.7653 7.0000 261.8947
Mean 0.2026 1.9730 72.4405

To improve the robustness of AI models, the mentioned technique in section 5.6.2.3 is also
applied here. For example, we can delete top-k corner case data, then them in training data
and retrain the vision inspection model. Subsequently, the robustness of the retrained model
(Model2) is compared with that of the original model (Model1) in Table 5.6.2. The robustness

38

measurement (RM) is also computed with L1, L2 and Lꝏ norm. It is also seen that the
retrained model has relatively larger values on these three kinds of RM, implying the
conclusion that retraining AI models based on a training set with corner case data removing
can improve models’ robustness.

 Quality level requirement
 “Safety”: AISL 0.1
 “AI performance”: AIPL 1
 “Fairness”: AIFL 1

The requirements need to satisfy the Lv1 quality level, as follows

• Record technologies applied to improve stability
• At Lv1, it is recommended to apply such technologies as cross validation and

regularization widely used to prevent over-fitting

5.7 Dependability of underlying software system
 General definition
 What is meaning of this specific AI quality?

 The term “dependability of underlying software system” means that training software
components used in the machine-learning training stage and prediction/inference software
component used when they are executed operate correctly in response to trained data given
or trained machine learning models. In addition to the correctness as algorithms, the general
quality requirements for software such as fulfillment of memory resource constraint and time
constraint, and software security are included here.

 Contents in vision inspection
 What should be done for the developer in the evaluation process

In machine learning based vison inspection systems, this quality requires to guarantee the
dependability of models, data and the execution environment. For example, for the given
datasets, such as Magnetic Tile Defect data or Casting Defect data, there are some open-
source codes available in the website. If the developers use them directly into the final vision
inspection system development, they should be responsible for ensuring sufficient quality.

 Possible approaches

While, for the possible methods on dependability evaluation, the conventional quality

management methods in software engineering can be also applied in the machine learning

39

based vison inspection systems. However, the following aspects can be considered in this
quality assurance.

First, the consistence between the developing environment and the actual operation
environment. To develop a program for vision inspection problem, there are many choices
for environment selection. To guarantee the final software can be executed successfully, the
environment involving operation system, engine, version, is required to be determined. For
example, the general deep learning system development, e.g. machine learning based vision
inspection systems, can be developed on the basis of Python.

Second, the hardware for vision inspection is an important factor affecting the system’s
dependability. For example, in vision inspection applications, the inputs are a series of
images, so the training process is usually based on GPU in computation, even servers or cloud
computing. However, when transferring this system into a real scenario for defect detection,
there is no way to guarantee the local platform satisfying these hardware requirement as well.
If not, the operation of vison inspection will be paralyzed. Therefore, hardware requirement
should be considered in dependability assurance.

Third, memory requirements may also affect the dependability quality. This factor may
determine the image size of inputs, the size of parameters, batch size for training and testing.
If a large memory is used for training and developing, a small one for testing. The
dependability of the vision inspection systems cannot be guaranteed as well.

 Quality level requirement
 “Safety”: AISL 0.1
 “AI performance”: AIPL 1
 “Fairness”: AIFL 1

The requirements need to satisfy the Lv1 quality level, as follows

• Select reliable and proven software and record the background of selecting said
software.

• Monitor the selected software during its operation to find any defect and take
measures such as modifications where necessary.

• Examine in advance the impact of differences in an environment from learning to
the test phase and an environment in the actual operation stage.

5.8 Maintainability of quality during operation

40

 General definition
 What is meaning of this specific AI quality?

 The term “maintainability of quality in operation” means that internal qualities fulfilled at
the time when the operation started is maintained throughout the operation period. Therefore,
internal qualities 1) can sufficiently respond to changes in external environments and 2)
prevent the quality from deteriorating due to changes in trained machine learning models
made for such response.

 Contents and possible approaches
According to the definition on this new AI quality, some possible researches can be studied

in the machine learning based vision inspection systems.

The first one is how to carry out additional learning. For example, in vision inspection, if a
new type of defects are found, the machine learning based system should be retrained to adapt
this new kind of defects. Therefore, the additional learning is to make the vision inspection
systems updated to new situations.

The second one is how to carry out the iterative training. This requirement is mainly applied
for adaptive learning or online learning. It makes sense that the trained vison inspection
model based on a given defect dataset is not possible to be perfect since the data amount is
always finite. To improve the system’s performance, we can slightly tune the parameters
when new defect images or corner case data are input to the system.

The third one is how to monitor the changes in vision inspection systems’ performance.
According to the guideline in section 7.8, there are several monitoring techniques, like
accuracy monitoring, KPI monitoring, model output monitoring, and input data monitoring.
Combining the following figure about types of change, we can describe some maintenance
scenarios in vision inspection systems.

41

Figure 5.8.1 Types of changes in maintenance

For example, the accuracy monitoring in vision inspection is namely to monitor the
classification accuracy on defect type recognition. Then, the red part in the figure can
represent the low accuracy scenario. For example, for the first case, it describes the
misclassification in vision inspection occurs in a short time, and defect recognition in the
subsequent time all fail. This may be because a component in the trained AI model breaks
down accidently. For the second case, it describes the process of a machine learning
component breaks down gradually. For the third case, it describes the error accumulation
process, memory overflow or operation environment change, which may cause the machine
learning systems breaks down gradually. For the forth case, the vision inspection system has
no fault since it operates incorrectly only for a specific period, it may be affected by input
data. For example, a series of new type of defect images are input in the vision inspection
system in a period, which are not included in the training dataset, so the output accuracy is
low.

For KPI monitoring, as we discussed in the quality “sufficiency of requirement analysis”,
two important KPIs in vision inspection applications are Precision and Recall. These two
metrics are different with accuracy, they pay major attention on each defect type or specific
case in evaluation, while accuracy aims at the global performance. According to the
requirements at the PoC phase, Precision and Recall need to exceed 70%. For the metric
Precision, its changes are caused by models’ overfitting. For the metric Recall, its changes
may be caused by underfitting. Therefore, adaptive or online learning are required in the
maintenance process. More maintenance problems can be analyzed based on the four types
of changes in the above Figure5.8.1.

42

For model output monitoring, the changes can also described by the problems in the trained
vision inspection systems. Assuming our machine learning based vision inspection model
aims at defect recognition, namely a classification problem, the model output must be one of
known defect types. For example, based on the Magnetic Tile data, the softmax function is
usually adopted in the output layer. Then the output can be one of six defects (Blowhole,
Crack, Break, Fray, Uneven, Free). One image cannot be recognized as more than two types
of defect, or none of these six types. If this case occurs, we can categorize the type of change
as the above Figure5.8.1, then analyze its reason for maintenance.

For input data monitoring, changes can be described by corner cases and risk cases. For
example, the first case implies the trained vision inspection system operates in a new scenario
which is regarded as unsound case in training process. To ensure the successful operation,
new defect images requires to be collected, and the trained model requires to be retrained in
the maintenance process. The second case describes the scenario of rare cases. The third case
describe the inputs from risk case to corner cases. The forth case may describe the operation
environment changes in a specific period, and the inputs in this environment are from a new
defect type. Therefore, two measures can be taken in the maintenance process. One is to
avoid this environment in the future operation, the second is to collect new defect data and
retrain the current vision inspection model.

 Quality level requirement
 “Safety”: AISL 0.1
 “AI performance”: AIPL 1
 “Fairness”: AIFL 1

The requirements need to satisfy the Lv1 quality level, as follows

• Examine in advance how to respond to notable system quality deterioration caused
by changes in external environment.

• In the case where on-line learning is given, examine in advance the impact of
unexpected quality deterioration and take measures from the system side such as the
limitation of operation range if necessary.

• In cases where additional learning is given off-line, quality management in line with
the previous seven paragraphs should be introduced.

AI利用システム・品質アセスメントシート

STEP0 システム要求分析
STEP1 システム・リスクアセスメント
STEP2 AI要求分析
STEP3 データセット・アセスメント
STEP4　 機械学習モデル・アセスメント
STEP5　 保全計画アセスメント
STEP6　 機能安全プロセス管理アセスメント

Ver.2.2

入力 出力

目的，背景，
サービス要求事項

システム機能、性能、
環境条件の仕様

入力 出力

システム機能、性
能、環境条件の仕様

リスク，リスク低減方
策，安全度要求（AI品

質レベル:AISL）

入力 出力 入力 出力 入力 出力

運用におけるリ
スク，リスク低

減方策

保全計画（運
用手順）

ソフト・ハードによる
リスク，リスク低減方

策

機能安全開発ソフト・
ハード

AIのリスク，リスク低減
方策（安全度要求）

AIシステム仕様，AIの機
能仕様（データセット属

性，モデルアーキへの要
求），

入力 出力 入力 出力

AIシステム仕様，AIの機
能仕様（モデルアーキへ

の要求）

学習モデルのハイパー
パラメータ，学習方法

AIシステム仕様，AIの
機能仕様（データセッ

ト属性への要求）

データセット属性・属性
値とバランス（訓練用・
妥当性確認用・テスト

用）

入力 出力 入力 出力

学習モデルのハイパー
パラメータ，学習方法

学習モデル
（学習済モデル）

データセット属性・属
性値とバランス（訓練
用・妥当性確認用・テ

スト用）

訓練用・妥当性確認
用・テスト用データセッ

ト（データ拡張・アノ
テーション含）

入力 出力
学習モデル

（学習済モデル）、訓練
用・妥当性確認用・テス
ト用データセット（データ
拡張・アノテーション含）

学習済モデル，訓練・妥
当性確認・

検証結果，変更仕様

入力 出力
学習済モデル．機能
安全開発ソフト・ハー
ド，保全計画（運用

手順）

システム検証結果，
変更仕様．安全度要

求（AI品質レベ
ル:AISL）

システム検証

機能安全開発

データセットアセスメント

データセット収集

学習モデルアセスメント

学習モデル開発

AI検証（PoC）

保全計画

システム要求分析

システムRA

AI要求分析

開発フローにおける入出力一覧

製品名

品 　番

目　的

No. ユースケース 入力 出力

1 1
2 2
3 3
4 4
5 5
6 6
7
8
9
10

機能

性能

環境条件

内容 条件

ハードウェア

ソフトウェア

システム
要件概要

システム想
定構成

No 仕様分類
要素

No
分類

構成システム要求分
析

システム要求分析票

製品名

品 　番

目　的

危害の
重大性

危害の
発生
頻度

評価
危害の算出根拠

（関連資料へのリンク等）
危害の重

大性
危害の発
生頻度

評価値

1
2
3
4
5
6
7
8
9
10
11

第２段階　リスク低減策検討

No 使用
ステップ

危険源
（システムの

部位）

危害
モード

危害を受ける
箇所

危害の発生状
況

（どのように危
害が発生する

か）

リスク推定

リスク低減方策
（本質安全設計／
防護安全設計／
使用上の注意）

具体的な
方策例

方策対象
（AI／機能安全開発／保全）／

（関連資料へのリンク）

許容可否
(〇/×)

システム
要件概要

システム想
定構成

第1段階　リスクの抽出・見積り

リスク低減結果

許容可否
(〇/×)

システム・リスクアセスメント票

製品名

品 　番

目　的

根拠・理由
データ妥当性の

Policy

リスク回避性

AI
パフォーマンス

公平性

入力特性
（空間的・
時系列的）

No

外部品質想定構成

ユースケース
（対象）

要求内容（外部仕様）

属性
（主要属性一覧）

検討が必要な項
目

処理内容 入力 出力

教師あり／教
師なし／強化

学習

AI品質の要求レベルシステム構成概要

前提条件
（前処理・
後処理）

過去の実績、
POCでの知見

構成ハード・ソフトへ
の要求

（データセットと機械
学習モデル以外）

データセットへの要求（Policy）

AISL**/Lv*

AIPL**/Lv*

AIFL**/Lv*

モデル精度
（正解率，適合率，再現性，F値，

など）

機械学習モデルへの要求

過去の実績、POC
での知見

データセット
属性

（データの量，
分布）

データ条件
（データの質，

数，サイズ・時空間
制約，種別，汚染対
策、メタデータの精

度・ルール）

制約（学習時間，ハ
イパーパラメータ対
象，必要なリソース

など）

出力特性
（多クラス分類，信頼
度情報有無，閾値，

など）

AI要求分析票

* 「データ妥当性確認」シート参照

製品名 AISL**/Lv*

品 　番 AIPL**/Lv* 内容 ツール名 内容 ツール名

目　的 AIFL**/Lv*

データ追加・
拡張の有無

データ
追加・
拡張の

データ
ラベリング

（メタデータ）
データ

ラベリング
（メタデー

タ）
データ

ラベリン
グ（メタ
データ）

データ
ラベリン
グ（メタ
データ）

妥当性確認
No,
*

妥当性確認
No,
*

妥当性確
認No,

*

妥当性確
認No,

*

正解率
[%]

適合率
[%]

再現性
[%]

F値 その他
妥当性
確認No,

*

妥当性確
認No,

*

妥当性確
認No

*,

妥当性確
認No,

*

正解率
[%]

適合率
[%]

再現性
[%]

F値 その他

-

-

-

データの妥当性確認 検証条件 検証結果 検証条件 検証結果
データの妥当性確

認

N回目　データセットの構成

データの妥当性確
認

拡張後の訓練用
データセットの構成

拡張後の妥当性確認用
データセットの構成

1回目　確認結果 N回目　確認結果

被覆性
分布
[%]

AI品質の要求レベルシステム構成概要

データの妥当性確認

データ追加・
拡張方法

オリジナル・データセットの構成

No

１回目データセット収集

データ数
または量
[件 or
sec]

被覆性
分布
[%]

対象 被覆性
分布
[%]

データ数
または量
[件 or
sec]

想定構
成

リスク回避性

AI
パフォーマンス

公平性

外部品質

訓検証用（テ
スト）プログラ

ム
Ver.

属性ご
との結
果（精
度）
[%]

分布
[%]

データセット属性
訓練用

データセットの構成
妥当性確認用

データセットの構成
検証用

データセットの構成
拡張後の訓練用

データセットの構成
拡張後の妥当性確認用

データセットの構成

データ数ま
たは量
[件 or
sec]

被覆性
分布
[%]

データ数量
[件 or sec]

（追加・削除・
拡張）

被覆性
分布
[%]

データ数また
は量
[件 or
sec]

被覆性

テータ
数量

[件 or
sec]

利用するMLモ
デルVer.

訓練用プ
ログラム

Ver.

妥当性確認用
プログラム

Ver.

データ数また
は量
[件 or
sec]

拡張後の検証用
データセットの構成

データ数
量

[件 or
sec]

属性値

ツール
による
分析
結果

（Pair-
wise

Analysi
sなど）

評価

妥当性確認用
データセットの構成

被覆
性

分布
[%]

テータ
数量

[件 or
sec]

利用する
MLモデル

Ver.

訓練用
プログラ

ム
Ver.

妥当性確認用
プログラム

Ver.

訓検証用（テ
スト）プログラ

ム
Ver.

被覆性
利用する

データセット
Ver.

属性ご
との結
果（精
度）
[%]

全体の
結果

（精度）
[%]

訓練用
データセットの構成

検証用
データセットの構成

拡張後の検証用
データセットの構成

その他の
改善ポイ
ント（アノ
テーショ
ンの精度

など）

被覆性
分布
[%]

テータ
数量

[件 or
sec]

データ
数量
[件 or
sec]

（追加・
削除・
拡張）

属性値ごとの結果

アノテーション方法

属性の抽出 N回目　データセット収集

利用す
る

データ
セット
Ver.

全体
の結
果（精
度）[%]

ツールによる
分析

結果（Pair-
wise

Analysisな
ど）

評価

データ数
量

[件 or
sec]

被覆性
分布
[%]

属性値ごとの結果

被覆性中属性 小属性
分布
[%]

分布
[%]

データ数ま
たは量
[件 or
sec]

被覆性
分布
[%]

データ数量
[件 or
sec]

データセット・アセスメント票

妥当性確認
No.

出所

時空間的妥
当性

（古すぎな
ど）

外れ値除去 汚染可能性 検査方法
ダブル
チェック

使用可否判
断

妥当性確認
No.

出所

処理方法
（ラベルポリ
シー準拠
/バラツキ

低減）

ラベルの揺
らぎ範囲

（分散・偏差
など）

汚染可能性 検査方法
ダブル
チェック

使用可否判
断

データ ラベリング（メタデータ）

総合
妥当性
判定

AISL**/Lv*

AIPL**/Lv*

AIFL**/Lv*

1

1

2

3

4

機械学習モデルの設計

構成（初期値）

1

学習条件

No

学習方法
(ID)

ブラックボックス最適化
（ランダムサーチ，グリッドサーチ，
ハイブリッドサーチ，ベイズ最適化

法，Nelder-Mead法，
遺伝的アルゴリズム方(GA)）

グレーボックス最適化
（データセット・サブサンプリング，

学習の早期打ち切り，
ウォームスタート(過去の経験ベー

ス)）

その他

半教師あり学習，模倣学習，
逆強化学習

MLモデル
(ID)

利用する
データセット

Ver.

利用するMLモデ
ルVer.

妥当性確認用プ
ログラム

Ver.

検証用（テスト）
プログラム

Ver.

訓練用プログラ
ム

Ver.

正確性（モデル精度） 正確性（モデル精度） 安定性（ロバスト性）

F値

学習曲線の収束状況
（学習時間・学習回数に
ついての見解，学習不
足・過学習の判断），

ROC曲線/AUC

学習曲線の収束状況
（学習時間・学習回数に
ついての見解，学習不
足・過学習の判断），

ROC曲線/AUC

過去の実績、POCでの
知見

モデル精度
（正解率，適合率，再現性，F値，など）

ハイパーパラメー
タ

MLモデル
(ID)

出所
（新規・改造・流用

など）

ハイパーパラメータ
最適化方法

学習方法
(ID)

AI品質の要求レベル

学習手順

出力特性
（多クラス分類，信頼度情報

有無，閾値，など）

制約
（学習時間，ハイパーパ
ラメータ対象，必要なリ

ソースなど）
外部品質

リスク回避性

AI
パフォーマンス

公平性

効率化方法
（ツールの利用含む）

入力特性
（空間的・
時系列的）

AI要求分析における機械学習モデルへの要求

学習終了基準
（学習回数・時間・過学

習防止方法など）

正解率
[%]

適合率
[%]

再現性
[%]

F値

訓練時

N回目（No.）機械学習

正確性（モデル精度）

敵対的
データ

正解率
[%]

適合率
[%]

再現性
[%]

F値

妥当性確認時

大きな推
論外れ

適合率
[%]

再現性
[%]

大きな推
論外れ

敵対的デー
タ

学習曲線の収束状況
（学習時間・学習回数に
ついての見解，学習不
足・過学習の判断），

ROC曲線/AUC

自然界
のノイズ

仕様の制限
（AI以外での
処理などへの

要求)

大きな推論
外れ

自然界のノ
イズ

安定性（ロバスト性）

自然界
のノイズ

敵対的
データ

評価値

検証時

安定性（ロバスト性）

正解率
[%]

機械学習モデル・アセスメント票

・「保全計画」と「保全実績」からなる

■保全計画

変更方法(How) 確認方法（How）

保全対象

変更の目的

（環境変化への対応/
仕様変更・追加・削除/

不具合対応）

変更の条件

変化の検出方法（最
大・最小・閾値/継続

時間）
変更タイミング

変更手段・手順

（再学習，
新規学習）

変更後の
デグレ防止
確認方法

システム要求
分析

システムRA AI要求分析
データセット
設計・収集

MLモデル 保全計画 機能安全

1 機械学習モデル 環境変化への対応

2
仕様変更

(変更・追加・削除)

3 データセット 環境変化への対応

4 仕様変更

5
機能安全

（ソフト・ハード）
環境変化への対応

6 仕様変更

7
（人による）
運用方法

環境変化への対応

8 仕様変更

■保全実績

変更要因
仕様変更管理票/
不具合管理表の

登録番号
システム要求分析 システムRA AI要求分析

データセット
設計・収集

MLモデル 保全計画 機能安全
判定

（OK/NG）

詳細
(他のアセスメント
シートへのリンク)

仕様変更管理表-*** － － － 〇 〇 － ー
不具合j管理票-*** － － － － 〇 － 〇

1.01

1.00

変更対象（What/When）

No.

変更内容 (影響範囲)

Ver.

変更内容 (影響範囲) 変更結果

保全計画アセスメント票

■機能安全プロセス管理の手順と帳票を利用 データセットや学習モデルなどAI要素以外

例）
・データ拡張ツール
・アノテーションツール
・学習モデルを訓練するソフト
・学習モデルをテストするソフト

機能安全プロセス管理

Quality assessment sheet for AI-based system

STEP 0 System requirement analysis
STEP 1 System risk assessment
STEP 2 AI requirement analysis
STEP 3 Dataset assessment
STEP 4　 ML model assessment
STEP 5　 Maintainance plan assessment
STEP 6　 Functional safety process management assessment

Ver.2.2

INPUT OUTPUT

Purpose, background,
Service requirements

Specifications of system
functions, performance, and
environmental conditions

INPUT OUTPUT

Specifications of system
functions, performance, and
environmental conditions

Risks, risk reduction
measures, safety

requirements (AI quality
level: AISL）

INPUT OUTPUT INPUT OUTPUT INPUT OUTPUT

Risks, risk reduction
measures, safety
requirements in

operation

Maintenance
plan, method,

change
records

Risks, risk reduction measures,
safety requirements in

software and hardware other
than AI

Software and hardware that
comply with functional
safety development

process management

Risks, risk reduction
measures, safety

requirements in AI (AI quality
level: AISL）

AI system specifications, AI
functional specifications

(requirements for dataset attributes
and model architecture)

INPUT OUTPUT INPUT OUTPUT

AI system specifications, AI
functional specifications
(requirements for model

architecture)

Learning model hyperparameters,
learning method

AI system specifications, AI
functional specifications

(requirements for dataset
attributes)

Dataset attributes /
attribute values and

balance (for training /
validation / testing)

INPUT OUTPUT INPUT OUTPUT

Learning model
hyperparameters, learning

method
Trained model

Dataset attributes / attribute
values and balance (for

training / validation / testing)

Training / validation /
testing dataset （include

data augmentation,
annotation）

INPUT OUTPUT

Trained model, training /
validation / testing dataset
（include data augmentation,

annotation）

Trained model, result of training /
validation / testing, modified

specification, bug reports

INPUT OUTPUT

Trained model, software and
hardware that comply with

functional safety development
process management，

Maintenance plan, method,
change records

System verification result,
Modified specifications.
Safety requirement (AI

quality level: AISL)

Dataset assessment

ML model development Dataset collectoin

AI verification （PoC）

AI requirement analysis

ML model assessment

System verification

System requirement analysis

System risk assessment

Maintenance plan Functional safety

Input / output in the development flow

Product name

Product number

Purpose

No. Use case Input Output

1 1
2 2
3 3
4 4
5 5
6 6
7
8
9
10
11
12
13
14
15

Hardware

Software

No Classification of specifications No
Configuration

Classification Component

Abstract of
System

requirement

Assumed
configuration of

the system

Content Condition

Function

Performance

Environmental condition

System requirement
specifications

System requirements analysis sheet

Product
name

Product
number

Purpose

Severity of
harm

Frequency of harm Evaluation
Basis for calculating harm
(Links to related materials,

etc.)

Severity
of harm

Frequency of
harm

Evaluation

Target of measures
(AI / functional safety

development /
maintenance) /

(Links to related materials)

Second Phase：　Examination of risk reduction measures

Acceptability
(〇/×)

Result of risl reduction

Acceptability
（〇/×)

Risk reduction measures
(Intrinsic safety design /

Protective safety design /
information for use)

No

First Phase：　Risk extraction / estimation

Use step
Source of
hazards

Harm
mode

Where
to be

harmed

Hazardous
situation

(How harm occurs)

Risk estimation

Abstract of
System

requiremen
t

Assumed configuration of
the system

System risk assessment sheet

Product
name

Product
number

Purpose

Requirement level of AI qualitySystem configuration overview

Data condition
（Quality of data, number, size /
spatiotemporal constraints, type,

pollution control, metadata
accuracy / rules）

Policy of data
validation

Knowledge of
PoC and past

record

Model correctness
（Model accuracy

（Accuracy，Precision, Recall，F-measures，
etc.,））

Reason

データセットへの要求 (Policy) Request for ML model

AIPL**/Lv*

Fairness AIFL**/Lv*

AISL**/Lv*

AI
performance

Requirements for
configuration
hardware and

software
(Other than
datasets and

machine learning
models)

Use case
(Target)

Content Input Output
Knowledge of
PoC and past

record

Datasets attribute
（Amount of data）

Attributes
(List of main
attributes)

Constraints (learning
time, hyperparameter

targets, required
resources, etc.)

Input
characteristics

(Spatial /
Time series)

Output characteristics
(Multi-class classification,

presence / absence of
reliability information,
threshold value, etc.)

No

Requirements （External specification）
Prerequisites

(Pre-
processing·

Post-
processing)

Supervised /
Unsupervised

/
Reinforcemen

t learning

Items to discuss

Assumed
configuratio

n of the
system

External quality

Risk avoidance

AI要求分析票

*: Refer "Data validation" sheet.

Product
name

AISL**/Lv*

Product
number

AIPL**/Lv* Content Tool name Content Tool name

Purpose AIFL**/Lv*

With or without
data
augmentation

データ
追加・
拡張の

Data
Labeling

(Meta-data)
Data

Labeling
(Meta-
data)

Data
Labeling
(Meta-
data)

Data
Labeling
(Meta-
data)

ValidationN
o,
*

ValidationN
o,
*

Validation
No,
*

Validation
No,
*

Accura
cy
[%]

Precisi
on
[%]

Recall
[%]

F-
measur

e
others

Validatio
n No,

*

Validatio
nNo,

*

Validatio
nNo,

*

Validatio
n No.

*

Accura
cy
[%]

Precisi
on
[%]

Recall
[%]

F-
measur

e
others

-

-

-

Add data,
data augmentation

Annotation method

AI
performance

Fairness

System configuration overview Requirement level of AI quality

Assume
d

configur
ation of

the
system

External quality

Risk avoidance

No

Extraction of attributes Original datasets configuration 1st dataset collection 1st result Nth dataset configuration

Data validation Testing conditons Testing results
Training

dataset configuration

Volume of
data

[items or
sec]

Dataset
Ver.

Distrib
ution
[%]

Volum
e of
data

[items
or

sec]

Diversi
ty

(covera
ge)

Distrib
ution
[%]

Volum
e of
data
[item
s or
sec]

Result
s

(accur
acy)
of

total
datase
ts[%]

Analysis
result by

tools（Pair-
wise

Analysis,
etc.）

evaluation

Diversi
ty

(covera
ge)

Distribu
tion
[%]

Volum
e of
data

[items
or

sec]

Nth　dataset collection Nth　results

Dataset attributes Training dataset configuration
Validation dataset

configuration
Verification dataset

configration
Data validation

Training dataset configuration
after augmentation

Validation dataset configuration
after augmentaion

Testing dataset configration
after augmentation

Data validation

Other
improve

ment
points

(accurac
y of

annotatio
n, etc.)

Testing conditons Testing results

Medium
attribute

small
attribute

Attribute
value

Target
Diversity
(coverage

)

Distributio
n

[%]

Validatoin dataset
configuration

Testing dataset
configuration

Data validation
Training

dataset configuration after data
augumentation

Validatoin dataset configuration
after data augmentation

Testing dataset configuration after
data augmentation

Volume
of data
[items

or
sec]

Volume of data
[items or

sec]
（add/delete/exp

ansion）

Diversity
(coverage)

Distribution
[%]

Volume of
data

[items or
sec]

Diversity
(coverage)

Volume
of data

[items or
sec]

Diversity
(coverag

e)

Distributi
on
[%]

Volume
of data

[items or
sec]

Diversity
(coverag

e)

Distribu
tion
[%]

ML model Ver.
Training
program

Ver.

Validation
program

Ver.

Testing
Program

Ver.

Results for each attribute value

Results
(accura
cy) for
each

attribut
[%]

Distribution
[%]

Volume of
data

[items or
sec]

Diversity
(coverage)

Distribution
[%]

Analysi
s result

by
tools

（Pair-
wise

Analysi
s, etc.）

evaluation
Training
program

Ver.

Validation
program

Ver.

Testing
Program

Ver.

Results for each attribute value

Results
(accura
cy) for
each

attribut
[%]

Result
s

(accura
cy) of
total

dataset
s[%]

Volume of
data

[items or
sec]

Diversity
(coverage)

Distribution
[%]

Volume of
data

[items or
sec]

Datase
t

Ver.

ML model
Ver.

データ
数量
[件 or
sec]

（追加・
削除・
拡張）

Diversity
(coverag

e)

Distribution
[%]

Volume of
data

[items or
sec]

Diversity
(coverage)

Distribution
[%]

Divers
ity

(cover
age)

データセット・アセスメント票

Validation
No.

Source

Spatio-
temporal
validation
（too old,

etc.）

Outlier
removal

Potential
contaminati

on

Inspection
method

Double
checked

Judgment
of

availability

Validation
No.

Source

Processing method
(label policy compliant

/ Reduction of
variation)

Label fluctuation
range (Variance

and standard
deviation, etc.)

Potential
contaminati

on

Inspection
method

Double
checked

Judgment
of

availability

Data Labeling（Meta-data）

Judgment
of total

validation

AISL**/Lv*

AIPL**/Lv*

AIFL**/Lv*

1

1

2

3

4

Request for ML model on AI requirement analysis Requirement level of AI quality

Knowledge of PoC and
past record

ML Model correctness
（Accuracy，Precision，Recall，F-measures，etc.）

Input
characteristics

(Spatial /
Time series)

Output characteristics
(Multi-class classification,

presence / absence of
reliability information,
threshold value, etc.)

Constraints (learning
time, hyperparameter

targets, required
resources, etc.)

External quality

Risk avoidance

AI performance

Fairness

MLmodel
(ID)

Source
（New / Modified

/ Diverted）

Hyper-
parameter

Hyper-parameter optimization
method

Learning
method

(ID)

Procedure
(Curriculum)

Learning end criteria
（Number of learning, time,

overfitting prevention
method, etc.）

Efficiency method
（Including the use of tools）

1

Black box optimization
 (random search, grid search,

hybrid search, Bayesian
optimization method, Nelder-Mead
method, genetic algorithm method

(GA))

Gray box optimization (dataset
subsampling, early stopping

learning, warm start (based on past
experience)

Semi-supervised learning, imitation
learning, reverse reinforcement

learning

Others

No

Design of ML model Nｔｈ（No.）　Ｍａｃｈｉｎｅ　Ｌｅａｒｎｉｎｇ

Training
program

Ver.

Validation
program

Ver.

Testing Program
Ver.

Robustness Correctness RobustnessCorrectness

Accuracy
[%]

Precision
[%]

Recall
[%]

F-measures
Out of

prediction

Out of
predictio

n

adversarial
data

Convergence of the learning
curve (views on learning time /

number of times of learning,
judgment of insufficient learning),

ROC curve / AUC

Accuracy
[%]

Correctness Robustness

MLmodel
(ID)

Learning method
(ID)

Dataset
Ver.

ML model Ver.
Natural
noise

Configuration（Initial value） Conditio of learning Training Validation Testing

Precision
[%]

Recall
[%]

F-
meas
ures

Out of
predicti

on

Natural
noise

adversar
ial data

Convergence of the learning
curve (views on learning time /

number of times of learning,
judgment of insufficient learning),

ROC curve / AUC

Accuracy
[%]

Precisio
n

[%]

Recall
[%]

Evaluato
in value

F-
measur

es

Natural
noise

adversar
ial data

Convergence of the learning curve
(views on learning time / number of

times of learning, judgment of
insufficient learning), ROC curve /

AUC

Specificationr
estrictions

（Request for
processing
other than

AI)

Machine Learning model assessment sheet

Changed to specifications that
repeat in the vertical direction

・ Consists of "Maintenance plan" and "Maintenance results".

■Maintainance plan

Change method (How)
Confirmation method

（How）

Maintainance target

Purpose of change

(Responding to changes in
the environment /

Specification change /
addition / deletion /Bug

handling)

Change conditions

How to detect changes
(Max / Minimum /

Threshold / Duration)
Change timing

Means of change /
procedure

(Fine tuning,
New learning)

Degreasing prevention
confirmation method after

change

System
requirements

analysis
System RA

AI requirements
analysis

Dataset
design and
collection

Learning model Maintainance plan Functional safety

1 Machine learning model
Responding to changes in

the environment

2
Specification change

(Change / Add / Delete)

3 dataset
Responding to changes in

the environment

4 Specification change

5
Functional safety

(Soft / Hard)
Responding to changes in

the environment

6 Specification change

7
(By human)

Operation method
Responding to changes in

the environment

8 Specification change

■Maintenance results

System requirements
analysis

System RA
AI requirements

analysis
dataset

Design and collection
Learning model Maintainance plan

Functional
safety

Judgment
Details

(Link to other
assessmentsheets)

Defect management
table -001

－ － － 〇 〇 － ー OK

Defect management
table -002

－ － － － 〇 － 〇 OK

1.01

1.00
Dataset assessment sheetト
ML model assessment sheet

Functional safety assessmentsheet

No.

Change target (What) Changes (Impact range)

Ver.

Change factor
(Why)

Specification
change

management form
/Defect

management table
registration number

Changes (Impact range) Change result

Maintainance plan assessment

■Use procesure and documents of Functional Safety process management
Except of target AI elements (datasets and ML-model)
eg.）
・Data augmentation tool
・Annotation tool
・Training software for ML-model
・Verification software for ML-model

Functional Safety Process Management

:: House Price analysis ::

1 Purpose of the technical report:

Our goal is to create an example implementation to demonstrate how Machine Learning Quality
Management (MLQM) guideline rule can used to assess interior properties of a House price dataset.
Here we will discuss about house price problem it is a regression problem which refers to predict
the price of house from the Kaggle datasets. This report can be used as a reference for application
of the guideline in evaluation of similar AI based systems.

2 Expected outcomes:

What a reader can expect from this technical report is the theme of this paragraph. The key
takeaways from this technical report should be highlighted in a way so that readers can understand
the advantages of applying MLQM guideline in a glance.

Example: We expect to achieve the following outcomes by applying MLQM guideline to an AI based
product:

− Details analysis of House price problem and breaking down genuine cases
− Different techniques for data management and feature reduction
− Introducing machine learning algorithm to our interest
− Examining product's quality, safety, and reliability for the end user.

3 Author’s role/ perspective of authors:

MLQM guideline is created to benefit solution designers to maintain a standard for process design,
system design and quality management. It also assists users of different stage to assess the quality,
applicability, and performance of the final product. Hence to clarify which stages of the product
development were kept in focus while writing this report, it should specify author’s perspective
explicitly.

Example: Here, we play as a ’service developer’. We consider the guideline as a ‘technical starting
point’ for developing the service in question. The essential intention of this report is to introduce a
total investigation of the issue and answer for it as indicated by the predefined AIQM appraisal
standards. As a creator of this model issue, my objective will investigate each part of it and attempt

to arrange them on the characterized structure of the rule. It will help us to analysis the problem
and finding some incite from the problem. We follow the guideline from early development stage
to ensure quality standards are maintained throughout the process.

4 Problem definition:

This is a supervised learning problem. 'House Prices: Advanced Regression Techniques' is one of the
most engaging Kaggle challenges that helps competitors developing their skills in solving problems
using Machine-Learning algorithms. This challenge is all about predicting the sale-price of a house
in Ames, Iowa based on the provided information about many key-factors that may have influence
on the price of the houses. Therefore, it is a regression problem and the task here is to minimize the
error of prediction. Several Machine-Learning algorithms including a DNN, SVM, Decision tree model
has been developed and implemented in this kernel using Scikit-learn and TensorFlow. Stacking and
ensembling of many algorithms have also been implemented to achieve better accuracy.

5 Product specification:

This paragraph should include requirements from development entrusted for the product. The
requirements can be technical details, quality requirements etc.

Details that can be proposed for product specification can be stated as

5.1 Model specifications:
• Type of learning: Supervised
• Type of AI model: Regression
• Model architecture: Simple deep learning
• Task to perform: Price prediction

5.2 Data related specifications:
• Data related specifications: List of attributes to consider/ Attributes to ignore/ specified

values for certain features

5.3 KPI specifications:
• Accuracy: LRMSE, MSE, RMSE etc.

6 Introduction of the datasets:

The report may include a very brief description of the dataset in hand. Common details of the
dataset that can be easily found after initial investigation can be presented here.

Example: Here we have chosen ‘House price’ dataset which is a Regression problem for predicting
the sale-price of a house. We will use Kaggle dataset for the analysis of the problem.

• Here is the link of Kaggle house price dataset
• (https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data)
• We also can build our won dataset as per requirements.

7 Sample of input data:

‘GarageQual’ is a simple input data for the model. Garage quality is one of the features for house
price analysis. we have seen values available in our dataset for this attribute. If we see the
description of the dataset for ‘GarageQual’ we will see there have total number of counts data point
is 1379 and the number of unique values is 5. There has different type of Garage Quality Gd (Good),
TA (Typical/Average), Fa (Fair), Po (Poor), NA (No Garage). Typical/ average number of data is high
that is 1311 others are nan-value.

Name: GarageQual, dtype: object (Description of a single attribute)

• count 1379
• unique 5
• top TA
• freq 1311

8 Quality assurance procedures using MLQM guideline:

After initial investigation of the current dataset, next the report should explore each of the eight
characteristics axes of quality management in response to the achievement of two external
qualities - risk avoidance and AI performance, as mentioned in the MLQM guideline.

A. Sufficiency of requirements analysis
B. Sufficiency of data design
C. Coverage of dataset
D. Uniformity of dataset
E. Accuracy of machine-learning models

F. Stability of machine-learning models
G. Soundness of components
H. Maintainability of quality during operation

8.1 Sufficiency of requirements analysis:
8.1.1 Definition:
The sufficiency of this requirement analysis deals with analysis of risk factors in conventional
software and test requirements analysis to include those risk factors when a black-box test is
conducted, it is required to fully examine data design as “sufficiency of data design” in order to
secure sufficient training data and test data with respect to various situations systems need to
respond to. More specifically, the number and details of combinations of attribute values focused
in the stage between the preparation of training data to the test process is examined at this stage.

General Process or structure of the Analysis for Sufficiency of requirement analysis:

• Defining the problem Domain and Check whether we have data for all ranges
• Identifying the corner cases in our problem domain
• Selecting Important feature by applying different types of feature selection method
• Setup Acceptance of variations for the selected features

8.1.2 Defining problem domain:
For the house price problem, we have 79 features and 1460 data points. Primarily, we can say this
is our problem domain which has 79 dimensions.

8.1.3 Data for all possible price ranges:
 We need to see if we have data for all possible price ranges. For example, in Minato Ward, Tokyo
with an average apartment price of 2,133,000 Yen/sqm (1,855 USD/sq.ft). The most expensive
apartment in this neighborhood was 3,063,000 Yen/sqm(29419.96 USD/sq.ft) and the cheapest was
1,093,000Yen/sqm(10498.21USD/sq.ft)(https://japanpropertycentral.com/tag/tokyo-
apartment-prices/). So, our data for possible ranges should be in this range.

8.1.4 Selecting well-defined feature dimensions:
The attributes and their corresponding attribute values should cover any possible data specific
scenario needs to be considered and listed for later analysis like coverage or sufficiency.

Here we have 79 features from there we need to analysis which feature we need to exclude and if
there any option for Included any new feature we need to analysis on that also. For feature
reduction we can apply different method PCA, Correlation matrix, backward elimination etc. For
Include some new feature we need lot of human effort.

Example:

Problems like Kaggle: House Price has lots of features; both necessary and redundant. Decreasing
this feature space will simplify the evaluation of dataset quality as per AIQM guideline. So, we

https://japanpropertycentral.com/tag/tokyo-apartment-prices/
https://japanpropertycentral.com/tag/tokyo-apartment-prices/

should not do any dimension reduction to the original dataset but feature selection. This will
eliminate the unnecessary features only which results in smaller feature space with explainable
attributes.

Filtering by correlation matrix:

For filtering, first we separated the numerical data and filled the missing values with relevant
amount. Then we calculated the correlation matrix of the numeric dataset.

Figure: Correlation matrix for original numeric dataset (38 X 38).

Now, we have selected the attributes which have >=0.5 correlation factor with the ‘SalePrice’.
After the selection, we got 11 attributes and the reduced correlation matrix looks like below.

Figure: Correlation matrix for selected features (11 X 11)

This is much simpler than the previous. Still there are some attributes which are highly correlated
(>=0.8) with each other. We have searched for those attributes and took only one of them for our
feature space which have higher correlation with ‘SalePrice’ than the other. Thus, our selected
attributes reduced to only 8 and ‘Saleprice’ is one of them. The selected numeric attributes are
below.

'OverallQual', 'YearBuilt', 'YearRemodAdd',
'TotalBsmtSF', 'GrLivArea', 'FullBath',
'GarageCars', 'SalePrice'

In this way, the number of numerical attributes reduces from 36 to only 7. Similar reduction can
be done for categorical attributes.

Example: It is not possible to take all example for our analysis for that we are using two features
for selecting well-defined feature dimensions

‘GrLivArea’: This attribute is total ground living area in square feet. It is a very
common information for a house and an important one.

‘ExterQual’: Similar to the previous attribute, we have listed the categories found in
our dataset for this non-numerical attribute.

8.1.5 Selecting in-bound and out of bound areas:
 The acceptance of variations in the selected features that are to be considered in our problem
domain should be declared specifically. User requirements should be prioritized here. Designer can
define the range of values which we should include and exclude If we choose a feature called
‘GrLivArea’ Sale price is closely related to it. In Japan a single person living by himself in should have
at a minimum 25-square meters (269-sqft) for one person and maximum recommended for four
person is 125-square meters(1345.49-sqrt)(https://resources.realestate.co.jp/living/how-
much-living-space-does-the-average-household-have-in-japan/). In Iowa state Houses in Iowa
average 1,550 square feet, In Des Moines, the state capital, lowest range 1100 square feet and
easier to build family homes upwards of 1800 square feet.
(https://www.bobvila.com/slideshow/this-is-the-average-home-size-in-every-state-
53461).New zoning laws make it harder to build small houses (less than 1,100 square feet) but we
have old houses from 1930 which have houses in low ranges. So here I am choosing acceptance
variation for our ground live area between 300 to 5000 square feet.

We have another feature called ‘ExterQual’ it is a non-numerical feature. It has attributes called Ex
= Excellent, Gd = Good, TA = Typical/Average, Fa = Fair. As a solution designer I will keep this as our
acceptance of variation.

8.1.6 Identifying unsound cases:
Any Combination of attributes which looks like impossible for our analysis those case need to be
excluded. For example, in some cases we have pool, but we don’t have the area of the pool this is
an unsound case, so we need to identify unsound cases.

8.1.7 Conclusion:
Finally, we have selected two feature ‘GrLivArea’ and ‘ExterQual’ for our analysis from 79 feature
and these two features is well explain. Now the Problem domain analysis is complete, and our
definition is covered all the area. Every possible real data can be fit on this dimension. We can say
our requirement is fulfilled.

8.2 Sufficiency of data design/ Coverage for distinguished problem domain:
8.2.1 Definition of ‘sufficiency of data design’:
The term “sufficiency of requirements analysis” means that sufficient requirements analyses are
made concerning the situations where machine learning based systems are used in real world and
their analysis results cover all possible situations.

General Process or structure of the Analysis for sufficiency of data design:

• Choosing the dataset for the define problem
• Apply a different type of augmentation or annotation rule to add new features if

necessary.
• Checking if we have enough data for our potential ranges

https://resources.realestate.co.jp/living/how-much-living-space-does-the-average-household-have-in-japan/)
https://resources.realestate.co.jp/living/how-much-living-space-does-the-average-household-have-in-japan/)
https://www.bobvila.com/slideshow/this-is-the-average-home-size-in-every-state-53461
https://www.bobvila.com/slideshow/this-is-the-average-home-size-in-every-state-53461

8.2.2 Data management in each feature dimension:
From the above defined problem domain, all possible number of combinations of attribute values
needs to be calculated.

− Here, we need to design our dataset as our defined problem domain. As it is very difficult
to make our own dataset so we can choose our dataset from most available data which is
match with our problem domain for here we are choosing Kaggle house price analysis data
which is very common in our case. First, we need to check the dataset is like our problem
domain. For similarity check we can check coverage or distribution in the coverage of
dataset part.

− If our dataset is expected that is fine. If we do not have available data, then we need to do
some augmentation. If the solution designer wants to include new feature into the existing
data set which have no relation with the existing attributes in that case, we need to give
some human effort like annotation.

− Since House price is a Discreate dataset numerically augmentation is quite impossible.
− Now we need to check the distribution of the Sale price for checking whether we have data

for all possible price ranges. The range of house price in Tokyo was between 10000 USD to
30000 USD which does not exist in our chosen dataset. So, we can estimate Iowa state house
prices only. Here is our distribution for Sale Price for Iowa state.

Figure: distribution for SalePrice

When we will design the data set, we will find huge combination of features. As a solution designer
we need to identify important and less important combinations. From problem domain analysis if
we want to combine some of the less important features into one useful feature, we will introduce
numerical method for that purpose. This will help reducing the dimensions and complexity of

feature space. So that, solution designer can eliminate some combinations that are less important
or inappropriate/risky for the models can be considered.

8.2.3 Conclusion:
House price is a regression problem and its feature space are very vast. Adding new feature, Data
Augmentation or feature deletion is not feasible. This data is not friendly for our data design if we
can define or make our own dataset then the problem will be solved. But here we don’t have enough
manpower and time we will use this data set for the analysis.

8.3 Coverage of dataset:
The term “coverage of datasets” means that a sufficient amount of data is given to cases covered
by establishing the standards as described in the previous paragraph without any part being missed
or overlooked in response to possible input corresponding to those cases.

General Process or structure of the Analysis for coverage of dataset:

• Checking coverage for our selected combination
• Identifying rare or corner cases
• Try to Find out features or some ranges of values we can exclude from the problem

domain

8.3.1 Coverage for each combination:
For each described combination of feature to be considered, data coverage should be calculated
and matched against previously set standards of coverage. This depicts the range of training
dataset as well as scope of test dataset.

− We need to take full range of data in our defined problem domain and check coverage for
each combination. So that we can see the complete distribution in all feature dimensions
of our data set.

− A complete distribution of training data both feature dimensions has been presented in
the following table.

ExterQual
GrLivArea Ex Gd TA Fa
5001-6000 1 0 0 0
4001-5000 2 1 0 0
3001-4000 2 5 6 1
2001-3000 25 103 68 0
1001-2000 21 359 630 5
0-1000 1 20 202 8

− The define range of ‘GrlivArea’ was between 300 to 5000 square feet. From this table We
can see that we have data for all ranges of values of that feature which means the
dimension have full data coverage.

8.3.2 Identifying rare/corner cases:
 For certain combination of cases, there can be lack of data points, but they may be extremely
important cases. These are considered rare/corner cases. Decisions need to be made about the
necessity of generating or gathering data with such cases.

− We must check whether each region is covered by some data or not. For example, the region
where ‘GrLivArea’ ranges from 5000 to 6000 has only one data point, hence this can be
considered as rare or corner case.

8.3.3 Feature deletion:
In some cases, data points may be rare, but it has very little effect on the whole system. During
model evaluation phase, we can identify such rare cases by fully excluding them from training but
not from testing. If the outcome is similar, then the feature can be said unnecessary.

− From the table we can see that in ground leave area in the region of 5000 to 6000 we have
only one data point so we don’t have much coverage in that point we can delete or reduce
the range but that will create limitation of the model.

8.3.4 Conclusion:
In this problem we have choose two features and those two features have not enough coverage in
some certain region so our model will fail in those region If we can increase the data for that region
that will be good for our model but if we cannot increase, then dataset is not capable for testing
that region. So, we can say that coverage of data set is not enough for our selected problem. Here
our selected data set cannot pass this internal quality test.

8.4 Uniformity of dataset:
8.4.1 Definition:
A concept contrary to “coverage” mentioned earlier is “uniformity” of data in relation to the overall
assumed input data. When each situation or case in datasets is extracted in accordance with the
frequency of its occurrence in whole data to be input, data is considered as “uniform”.

General Process or structure of the Analysis for uniformity of dataset:

• Check the distribution of Our selected Feature
• Try to compare between Expected and actual distribution
• Seeing the distribution, we can update our problem domain if it is necessary
• Finally, we will make the decision

8.4.2 Enough data for each case:
We need to make sure that there are enough data for every possible case scenario. The distribution
of the data points should be measured and analyzed against expected distribution. The distribution
is expected to follow real world distribution.

Example:

For training dataset, expected distribution for the attribute is uniform is shown for the selected
attributes in the defined region of interest.

Figure: Expected distribution of houses for the Selected feature space

Actual distribution,

Figure: Distribution of training data in selected feature space.

In this distribution graph, we can see, there have no ‘Ex’ houses below 1000 sqft and number of
houses between 4000 to 5000 sqft is very little. Similarly, number of ‘Gd’ house in range of 4000 to
5000 sqft also very less and for ‘TA’ house there have no house in that rages.

There are a few numbers of houses with ‘Fair’ external quality which are comparatively smaller
houses in our defined range of problem domain. Also, the sizes of ‘Ground Living Area’ in houses
are mostly from 1000 to 3000 sqft.

8.4.3 Conclusion:
Here Our expected distribution and actual distribution doesn’t match with each other. So, we can
say that the distribution is not uniform. It can be said that problem domain is well covered, but data
points are not uniformly distributed. Our selected problem is failing in this quality testing
measurement.

8.5 Accuracy of machine learning models:
8.5.1 Definition of ‘accuracy of machine learning models’:
 The term “accuracy of machine-learning models” means that a machine-learning component
reacts to specific input data included in learning datasets (consisting of training data, test data and
validation data) as expected.

General Process or structure of the Analysis for Accuracy of machine learning models:

• We need to setup KPI for the performance checking
• Checking the performance of the model by using our selected KPI
• Try to find out the cases where model performance is failing
• Make the decision after all analysis

8.5.2 Selecting specific method:
The method of evaluation should be described both for convergence against training data and
achievement against test data.

Example:

First, we need to setup KPI for the performance checking. There have different types of KPI for the
evaluation.

• Mean Square Error
• Root Mean Squared Error
• Mean Absolute Logarithmic Error

Mean Square Error: In Statistics, Mean Square Error (MSE) is defined as Mean or Average of the
square of the difference between actual and estimated values. This is used as a model evaluation
measure for regression models and the lower value indicates a better fit. By using Mean Square
Error, we have found error result 3.211.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀 𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆 =
1
𝑀𝑀
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

Root Mean Squared Error: (RMSE) is the standard deviation of the residuals (prediction
errors). Residuals are a measure of how far from the regression line data points are; RMSE is
a measure of how spread out these residuals are. In other words, it tells you how
concentrated the data is around the line of best fit. Root mean square error is commonly
used in climatology, forecasting, and regression analysis to verify experimental results. By
using RMSE, we have found error result 1.791

𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆 𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆 = ��
(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑀𝑀

𝑛𝑛

𝑖𝑖=1

Mean Absolute Logarithmic Error: Result: It is the difference between the measured value and “true”
value. Since Sales price distribution is scatter and we also need to take the distribution range in a
small range for that we are using logarithmic error. By using Mean absolute logarithmic error, we
have found error results 0.7653.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝑆𝑆𝑅𝑅𝑀𝑀 𝐿𝐿𝐸𝐸𝐿𝐿𝑀𝑀𝑆𝑆𝐿𝐿𝑅𝑅ℎ𝑚𝑚𝐿𝐿𝑚𝑚 𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆 =
1
𝑀𝑀
�|𝐴𝐴𝐸𝐸𝐿𝐿 𝑦𝑦𝑖𝑖 − 𝐴𝐴𝐸𝐸𝐿𝐿𝑦𝑦𝚤𝚤� |
𝑛𝑛

𝑖𝑖=1

From the analysis we have seen different measurement by using different types of KPI. Now we will
check the Performance comparison for different sized dataset using Mean absolute Logarithmic
error:

First, we trained and evaluated a fully connected dense layer with different region data from table
in coverage of datasets. The results are listed in table.

ExterQual

GrLivArea Ex Gd TA Fa

 Data Err. Data Err. Data Err. Data Err.

5001-6000 1 - 0 - 0 - 0 -

4001-5000 2 - 1 - 0 - 0 -

3001-4000 2 - 5 134.567 6 8.69171 1 -

2001-3000 25 8.95012 103 6.51191 68 18.5707 0 -

1001-2000 21 40.3462 359 1.44147 630 1.33367 5 46.6369
0-1000 1 - 20 4.42439 202 3.72669 8 41.8109

Here, the error is mean absolute logarithmic error obtained from cross validation of available data
with ‘fold = 4’. We plotted the error results against the number of training data.

Figure: Error vs Number of training data interpolation.

The curve is like exponentially decaying which is expected. Error is inversely proportional to number
of data.

Error ∝
1

𝑀𝑀𝑆𝑆𝑚𝑚𝐴𝐴𝑀𝑀𝑆𝑆 𝐸𝐸𝑜𝑜 𝑆𝑆𝑀𝑀𝑅𝑅𝑀𝑀

8.5.3 Performance comparison for different distribution of data:
In the above case, the categorical attribute was inactive during training; it was redundancy. Now,
we want to see, how different distributions of attribute affect the performance of a model. For this
analysis, we have made sub-groups of data like below.

ExterQual

GrLivArea Ex Gd TA Fa
5001-6000 1
4001-5000 3
3001-4000 14
2001-3000 196
1001-2000 1015
0-1000 231

Here, we could have taken all 1460 data points but then distribution of ‘GrLivArea’ would have
effects too on model performance. From the distribution plot of this attribute below, we can see
most of the data lies between 1001-2000 sqft. By taking only this range will minimalize its effect on
training and evaluation.

Figure: Distribution of data samples with respect to ‘GrLivArea’.

So, we took the sub-group with best number of data samples; ‘1001-2000 sqft GrLivArea’.
Distribution of selected sub-group for attribute ‘ExterQual’ is given below.

Figure: Distribution of sub-group of train data (GrLivArea: 1001-2000 sqft) for ‘ExterQual’.

To understand the effect of data distribution, we took three different combination of categories and
then trained and evaluated using the same previous model. Obtained results along with the
combinations taken has been summarized in a table below.

Combination of categories Number of rarest data Error
TA + Fa
(630 + 5)

5 1.28569

TA + Ex
(630 + 21)

21 1.18049

TA + Gd
(630 + 359)

359 0.91479

Here, Number of rarest data = number of data available for the rarest category in a certain
combination.

These results indicate that, having rare cases in dataset is necessary but we need enough amount of
data samples to represent those cases.

We have measured the corner case seeing the data distribution from now model can identify the
corner case by measuring the performance of the model.

8.5.4 Finding corner cases:
Following the evaluation method, we can find erroneous behavior of the model. Thus, we will get
the limitations of our design reform it.

8.5.5 Conclusion:
Prediction accuracy can be shown by KPI. Here we are using Mean absolute Logarithmic error for
the KPI measurement. Our model becomes fail in some cases because we do not have enough
coverage in some region. From the above analysis we can say, the more we have data coverage our
error is decreasing. If the data is uniform the performance is also getting better.

8.6 Stability of machine-learning models:
8.6.1 Definition:
The term “stability of machine learning models” means that a machine-learning component shows
a reaction to input data which is not included in learning datasets sufficiently like data in learning
datasets. The predictability of behaviors of the machine-learning component improves by
eliminating unpredictable behaviors caused by low generalization capabilities or adversarial
examples.

Measuring stability/ robustness of machine learning models:

Stability analysis enables us to determine how the input variations are going to impact the output
of our system. Stability of a learning algorithm refers to the changes in the output of the system
when we change the training dataset. A learning algorithm is said to be stable if the learned model
doesn’t change much when the training dataset is modified. A model changes when you change
the training set. That’s just how it is! But it shouldn’t change more than a certain threshold
regardless of what subset you choose for training. Corner cases and related detection are crucial in
AI quality assurance for constructing safety- and security critical systems. The generic corner case
researches involve two interesting topics.

− Enhance DL models’ robustness to corner case data via the adjustment on
parameters/structure

− Generate new corner cases for model retraining and improvement

Experiments:

According to guideline Evaluating stability is important in cases where safety is particularly
required.

• Problem of making an inference far away from input other than training datasets: This
problem may be caused by over-fitting on, for example, training datasets.

8.6.2 Specific handling:
Stability is strongly related to the following three phases in the machine learning lifecycle so that it
needs to be evaluated and enhanced mainly in these phases in order to achieve the stability goals

- Iterative training phase: Avoid over-fitting of training datasets through separating training datasets
and validation datasets, evaluating the impact of minimal changes in input on output and monitoring
the training process.

Overfitting: Good performance on the training data, poor generalization to other data.

Underfitting: Poor performance on the training data and poor generalization to other data

For example, we have chosen a full connected dataset for ‘Hose price analysis’ problem. The model
architecture is given below.

Architecture FC(128)+ReLU
FC(256)+ReLU
FC(64)+ReLU
FC(10)+ ReLU

Number of trainable parameters 88,449

The training loss: 0.0212 and validation loss: 0.0514 , epochs: 300, batch size = 32

Figure 1: Loss Curve of training and testing

 Here the training loss: 0.0451 and validation loss: 0.1237 when epochs: 100

Figure 2: Loss Curve of training and testing

Model Architecture:

Layer (type) Output Shape Param #

===

dense_84 (Dense) (None, 19) 5776

dense_85 (Dense) (None, 19) 380

dense_86 (Dense) (None, 19) 380

dense_87 (Dense) (None, 19) 380

dense_88 (Dense) (None, 1) 20

===

Trainable params: 6,936

The training loss: 0.0241 and validation loss: 0.0494, epochs: 100

Figure 3: Loss Curve of training and testing

From the curve we are seeing that model is not making an inference far away from input other than
training datasets that is model is not overfitted. Training loss and validation loss is corelated with
each other, so overfitting problem is not happening for our problem.

• https://epub.wu.ac.at/5398/1/Report131.pdf
• https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf

8.6.3 Conclusion:
Stability of machine learning models help us to measure the model’s generalization ability,
evaluating a model’s reaction to corner cases/rare cases, evaluating the model’s performance on
adversarial examples. Therefore, Robustness indicate model’s performance for unknown inputs or
under new environmental conditions.

8.7 Soundness of components/ Dependability of underlying software system:
8.7.1 Definition:
The term “soundness of components” means that training software components used in the
machine learning training stage and prediction/inference software component used when they are
executed operate correctly in response to trained data given or trained machine learning models.
In addition to the correctness as algorithms, the general quality requirements for software such as
fulfillment of memory resource constraint and time constraint, and software security are included
here.

Listing necessary AI components and their description: The following AI components should be
described in details and their quality need to be assured.

https://epub.wu.ac.at/5398/1/Report131.pdf

8.7.2 Language:
We can work with Python, R, Java, Julia, and Scala (briefly) for ML. Python language has been used
for developing this AI. It uses various open source packages which should be version compatible
with each other. So, the list of used packages and their versions should be provided by the developer.

Programing language Version
Python 3.6.12
Package Version
NumPy 1.18.5
TensorFlow 2.3.1
Pandas 1.1.5
matplotlib 3.3.2

8.7.3 Framework:
 ML models can be run on a variety of frameworks, all of which run at different speeds. The most
popular are Keras, TensorFlow, Caffe, Apache, AWS, Theano, Microsoft CNTK, PyTorch, and scikit-
learn. Each framework is different from the next and was created to suit different needs.
TensorFlow, Keras and Theano run neural networks very fast, AWS is generally robust, and scikit-
learn is best for tabular data. Some frameworks allow us to pay to get faster results. Here for this
project we use tensorflow and keras.

8.7.4 Usage of memory:
It shows you how much computer memory your model is using, and how much is available so we
need to define a minimum and maximum usage of memory when the AI device is in operation
combining data storage, model parameters, codes/algorithms and others.

− Model architecture and weights: AI developers generally use Hierarchical Data Format
(HDF) file (.h5) to store trained AI networks and their weights. The saved network has
88,449 parameters and takes about 2 MB space on the hard drive.

− Input data: The general meaning of input is to provide or give something to the computer,
in other words, when a computer or device is receiving a command or signal from outer
sources, the event is referred to as input to the device. So, the memory usage by the input
data can be defined after complete design of the machine.

− Codes/Algorithm: An “algorithm” in machine learning is a procedure that is run on data to
create a machine learning “model.” Machine learning algorithms “learn” from data or are
“fit” on a dataset. There are many machine learning algorithms Different algorithms,
written by programing languages are part of the workflow of the machine. These codes do
not take much space on hard drive.

− Dataset for retraining: We need to keep a space for holding dataset for possible re-
training phase at least the size of the actual dataset. For example, House price dataset
takes about 449.88 KB space.

8.7.5 Metaparameters:
Metaparameters are values input to our ML algorithm that tell it how to behave (thereby
influencing the training/predicting time of our algorithm). Not all models have the same
metaparameters.

− Learning Rate (eta): As our learning rate increases, the computational time of our model
decreases.

− Number of Features: As the number of features in our model increases, the computational
time of your model also increases. (In NNs, this can be number of layers; in KNNs, the
value of k; etc.)

− Number of Rounds/Epochs: If we increase the number of rounds or epochs for a machine
learning model, it will take longer to train (but the prediction time is the same).

− Objective: Some ML models are adaptable for different objectives. Different objectives
have different train and prediction times (usually regression is longer than binary is longer
than count).

− Early Stopping: Some ML implementations allow you to stop training your model early
(automatically) if your model performs well enough on a validation dataset. Adding this
early-stopping functionality will never hurt run time.

− Others: Every ML model has different metaparameters which can influence training time
that must be attended to.

8.7.6 Hardware:
Changing the hardware for the model runs on is an expensive though simple way to make your
model run faster. There are three main processing units: CPUs, GPUs, and TPUs.

Tensor Processing Units (TPUs) are proprietary property of Google that can be accessed through
Google Cloud and are constantly being improved. They run fast for neural networks. They are the
chosen processing unit of DeepMind. TPUs have higher input/output operations per Joule than any
existing GPU.

GPUs are faster than CPUs. If anyone increase the number of processing units your model runs on,
model will train and predict faster. Most image recognition algorithms run especially fast on GPUs.
Some GANs for image generation only run on GPUs. There are some cases where the bit length of
the CUDA matrix calculation is different from each other.

Example:

In some version of TensrFlow or Chainer, 32 bits is enough, and 64 bits is too much under the
consideration of precision of matrix calculation and consumption of the memory or resources of
calculation. In some version of Quadro (nvidia) don't support the 32bit. In such case, no effect for
the acceleration of calculation for 32 bits with the expensive Quadro GPU. At that time, 32 bit was
supported with the GeForce so the people uses GeForce instead of Quadro. On the other hand, Intel
released the instruction set and driver software specialized for AI/ML was released. So, the provider
of the framework (TesorFlow, Pytorch or so) tends to support both of the implementation (CUDA

32bit and Intel driver). Sometimes 16 bits is enough for some business solution and GPU was not
used in another solution. In the house price problem, we can check soundness of our problem by
using different environment like using GPU then we can compare difference between them by
reproduce the result. Our model training using house price dataset can be done in reasonable time
with 2 GB of RAM and no GPU. The best configuration of H/W or S/W will change frequently
according to the technical progression so the designer should search the current technical
information and decide the best configuration with good balance.

8.7.7 Software security:
Security is a major concern when machine operates online. Here, we have described the examples
of the theme that the solution designer should consider while building the application sets with
AI/Machine learning functionality.

This document doesn’t refer to the common aspect for the cyber security taken for the software
that doesn’t include the AI/Machine learning functionality also. (For the reference about the cyber
security aspect doesn’t include the AI/Machine learning, refer to the ISO/IEC 27000 series, NIST
SP800 series, NIST Cyber Security Framework, ISO/IEC 15408 Common Criteria and so on).

Examples: The attack method is developed day by day. So, the following list is current examples.
The solution designer should search the newest information periodically. The annual assessment
and the measures are recommended.

• Adversarial example: A machine learning technique that attempts to fool models by
supplying deceptive input with small and intentional perturbations.

− "Explaining and Harnessing Adversarial Examples" Goodfellow et al.
− https://arxiv.org/pdf/1412.6572.pdf
− "Adversarial Examples in the Physical World" ICLR2017 Krakin et al.
− https://arxiv.org/pdf/1607.02533.pdf

• Membership inference: Given the huge number of the input, obtaining whether a data
point is from the target model’s training set or not. “Membership Inference Attacks
Against Machine Learning Models” Shokri et al.

− https://arxiv.org/pdf/1610.05820.pdf

• Poisoning: Adversarial contamination of training data.

https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1607.02533.pdf
https://arxiv.org/pdf/1610.05820.pdf

“Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression
Learning”

− https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418594

• Model inversion: Model Inversion Attacks that Exploit Confidence Information and Basic
Countermeasures

− https://dl.acm.org/doi/pdf/10.1145/2810103.2813677

• Model extraction: An attack in which an adversary utilizes a query access to the target
model to obtain a new model whose performance is equivalent to the target model
efficiently.
"Stealing Machine Learning Models via Prediction APIs"

− https://arxiv.org/pdf/1609.02943.pdf

• Backdoor attack: With a specific trigger by additionally training the malicious training
data, including the specific trigger to the DNN model, the DNN correctly recognizes normal
data without triggers, but the network misrecognizes data containing a specific trigger as a
target class chosen by the attacker.
"Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering"

− https://arxiv.org/pdf/1811.03728.pdf

8.7.8 Conclusion:
It is not only code, algorithm, data etc., but also the components around to construct a complete
application when we talk about AI solution. We listed and identified some of the most important
components of the 'House price prediction' machine in the above section.

8.8 Maintainability of quality during operation:
8.8.1 Definition:
The term “maintenance of quality” means that internal qualities satisfied at the commencement of
operation are maintained throughout operation. This concept means that internal qualities can fully
respond to changes in operational environments outside the system and that any change in trained
machine learning models do not cause unnecessary deterioration of quality.

8.8.2 Maintainability of quality during operation:
 It is required to continuously monitor behaviors of machine learning based systems and machine
learning components for the purpose of checking if the quality fulfilled at the commencement of
operation is maintained throughout the operation period

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418594
https://dl.acm.org/doi/pdf/10.1145/2810103.2813677
https://arxiv.org/pdf/1609.02943.pdf
https://arxiv.org/pdf/1811.03728.pdf

8.8.3 Accuracy (KPI) monitoring:
“Accuracy monitoring” directly measure the accuracy of trained machine learning models. This
monitoring is divided into some patterns in accordance with the method of collecting correct
answers to inference results of trained machine learning models required for calculating the
accuracy.

8.8.4 Model output monitoring:
Model output monitoring is further categorized into a case where each output inference is checked
by experts as in the case of medical diagnostic and a case where all inferences are checked
altogether after a certain period of time.

8.8.5 Input data monitoring:
“Input data monitoring” refer to the monitoring of results of inferences made by a trained machine
learning model and the monitoring of its input data, respectively. The monitoring methods are
divided into human monitoring in case of house price prediction data. For the house price problem
concentrate on privacy of data for real environment use also need to check the preprocessing
method of data additional training. We need to check how to handle cases where quality
deteriorates.

8.8.6 Conclusion:
Maintenance of machine learning technology helps improving its models both in accuracy and
robustness. It also helps to build a long-lasting model, real world distribution of data, also corner
cases. Therefore, implementing maintenance procedures can develop better machine learning
solution gradually.

P a g e | 1

An AIQM Reference Report on
Postal Code Analysis

1 Purpose of the technical report:

This report aims to describe a real-world problem and possible machine learning
solution to it. The objective of this report is to express the idea verbally,

• How we can think about the problem
• How we can design the problem
• How we can manage to fulfill our requirements
• How we can execute our ideas
• How we can validate our work
• How we can ensure its performance

In this report, we will discuss the problem of ‘postal code analysis’. This problem
refers to identifying written numerical digits which is very similar to popular MNIST
digit classification problem. In the later sections, we will go in more details about
the problem followed by some possible solutions.

2 Expected outcome:

This report has been written to accumulate many ideas and analysis done by
researchers to come up with a solution to ‘postal code analysis’. The complete
analysis will be explained here based on AIQM guideline written and translated by
AIST. This is not only analyzing postal code problem but also validating the self-
sufficiency of the guideline. So, the reader of this report can expect to gather
knowledge about,

• Details of ‘postal code analysis’ problem analyzing real cases
• Challenges and methods for data management
• Introducing AI to our problem
• Methods and ideas about validating data and AI

P a g e | 2

• Thoughts about future maintenance and handling

3 Author’s role/ perspective of authors:

From author’s point of view, the primary motive of this report is to present a complete
analysis of the problem and solution to it according to the predefined AIQM
assessment criteria.

This report will be a complete example of quality management of an AI. The example
will help describing the completeness of AIQM guideline or give a new perspective
to think upon which will eventually improve the guideline. The target will be
exploring every aspect of it and try to organize them on the defined structure of the
guideline.

This example is not a creation of a single person but congregation of different ideas
and opinions of many researchers and engineers.

4 Problem definition:

This report will focus on ‘postal code analysis’ i.e., ‘handwritten digit recognition’. In
the field of machine learning, it is an image classification problem that identifies 10
numerical digits. The target behind this analysis is to evaluate an automated
machine that can segregate posts according to their postal codes.

Figure 1: An overview of the workflow of ‘Postal Code Analysis’ machine.

Referred to fig. 1, first, the machine takes images of each number of the code

P a g e | 3

sequentially, preprocesses and inverts color. Preprocessing may include centering the
number, adding more contrast etc. Then the images are passed to a trained classifier
which outputs the prediction. This is a simple description of ‘postal code detecting
machine’. In the following section, we will discuss what specifications are needed for
each part of the machine.

5 Product specification:

In this part, we will describe the specifications of the final product or the anticipation
of client about the AI solution. For the specific problem of postal code analysis, the
specifications or descriptions can be stated like below,

5.1 Data related specification:
• Classification using image data: Digit identification needs to be done using

only image data. We can get the images by cropping boxes from scanned
documents. Later these images can be gray scaled or inverted for
computational ease.

• Ink used for writing: People can use pencil or pen for writing. Pencils can vary
at graphite grading where gel pen can spread ink over the document. So,
black ball-point pen is the tool to write the numbers.

• Declaring prohibited patterns of input (handwriting): Since there are infinite
number of hand writings, it is necessary to define some unacceptable patterns
which are ambiguous for proper identification. For example, loop of ‘9’ must
be closed otherwise the pattern will be similar as ‘4’.

5.2 Model specifications:
• Type of learning: Supervised
• Type of AI model: Classification
• Model architecture: CNN
• Task to perform (Identifying numbers): Postal code consists of only numerical

digits. So, the machine needs to be capable of identifying ten digits (from 0 to
9).

5.3 KPI specifications:
• Accuracy: Accuracy, Recall, Precision, F-measure etc.

P a g e | 4

• Stability/Robustness: Mutational robustness, Distance-based Surprise
Adequacy (DSA) etc.

6 Introduction of the datasets:

Postal code detection or digit recognition is a supervised classification problem in the
AI region. So, a dataset will be involved for training and testing purpose. To manage
the dataset, we can do any of the following:

• We can use any open source dataset. For example,
The MNIST database
[http://yann.lecun.com/exdb/mnist/]
USPS dataset - Handwritten digits
[https://www.kaggle.com/bistaumanga/usps-dataset]
ARDIS – the Swedish dataset of historical handwritten digits
[https://ardisdataset.github.io/ARDIS/]

• We can use multiple datasets combined.
• We also can build our won dataset as per requirements.

Among all of these, MNIST is the most popular dataset of handwritten digits and so
it will be used for our analysis throughout the report.

MNIST dataset holds 70,000 image data where 60,000 is training data and the rest
is for testing. These are gray scaled images having dimensions 28X28. It is written
in the description of the dataset that there were 250 different hand writings involved
in making this. The digits were also centered by computing the center of mass of the
pixels.

When we choose a dataset to work with or train a model, it is necessary to decide on
the targeted region of the solution. For ‘postal code detection’ problem, we need to
clarify, for which country or area of the world, the solution will be used. If we know
that, we need to build dataset based on that region. Other than dataset, the
evaluation procedures defined by AIQM guideline are universal. We know, MNIST
is a US based handwritten dataset (Wikipedia/MNIST), so a classifier trained on
MNIST will be suitable for the US people.

http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/bistaumanga/usps-dataset
https://ardisdataset.github.io/ARDIS/
https://en.wikipedia.org/wiki/MNIST_database

P a g e | 5

7 Sample of input data:

A sample of input data (image) for the model is given here. It is a gray scaled 28X28
image with color inverted and high contrast. This is one of the images from the test
set of MNIST dataset. The digit is well defined, but it is not fully centered from
practical point of view. So, for many reasons, we need to analyze the distribution and
orientation of the images for later use. This part is referred to as AIQM assessment.

Figure 2: A sample input for ‘Postal Code Analysis’ machine from MNIST dataset.

8 Quality assurance procedures using AIQM guideline:

This is the section where we will show all our analysis on postal code detection. There
are eight quality assessment criteria:

• Sufficiency of requirements analysis
• Sufficiency of data design
• Coverage of dataset
• Uniformity of dataset
• Accuracy of machine-learning models
• Stability of machine-learning models
• Soundness of components
• Maintainability of quality during operation

8.1 Sufficiency of requirements analysis:
8.1.1 Definition:
‘Sufficiency of requirements analysis’ means analyzing all possible characteristics of
real data that are to be input to the machine learning models. The primary target is
to cover all possible cases in real world. We also analyzed and defined impossible
case scenarios if there is any.

P a g e | 6

Requirements is the first thing we decide before starting with the solution. In postal
code detection, the major goal is identifying handwritten digits from images but that
is not all. We know, there are only 10 digits to recognize but when it comes to
handwritten digits, the variety can be vast. So, defining expected features of the
input images and establishing a problem domain is a pre-requisite. For postal code
detection, since the solution will be using AI, we will expect the machine to be
equivalent to human capability. So, we can say, ‘Machine needs to identify all the
digits which human eyes can identify.’ Next, we will discuss every requirement step
by step.

8.1.2 Data for all possible classes:
In the dataset, I need uniform distribution of all the digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
both in train and test set.

8.1.3 Selecting well-defined feature dimensions:
There are lots of features both in images and in handwritings which are responsible
for creating variances among the same numbers. Here, we have tried to list all of
them.

I. Position of the digit: This refers to the location of the writing in the image
grid.

Figure 3: Different positions of the digit.

II. Area: It means, what is the dimensions of the digit in proportion to the image.

Figure 4: Different areas of the digit.

III. Length: It refers to the length of the pen strike. In the following figure ‘1’ has
small length while ‘8’ has large length.

P a g e | 7

Figure 5: Different lengths of the digit.

IV. Brightness/ Contrast: It means, how bright or sharp the image is.

Figure 6: Different contrasts.

V. Straight/ Tilted: It refers to the orientation of the digit.

Figure 7: Different tilts.

VI. Boldness: This is self-explanatory. It refers to the thickness of the writing.

Figure 8: Different boldness.

VII. Handwriting: There are a lot of hand writings proportional to the number of
populations and this feature will vary among digits. So, a complete analysis
will create several (10) digit specific problem domain. We are presenting some
examples of different writing style of number ‘9’. In the next step, we will
define some features and their values to describe these writing types.

P a g e | 8

Figure 8: Different types of writing ‘9’.

8.1.4 Selecting in-bound and out of bound areas:
In this section of analysis, we need to define the values or a range of values as region
of interest for each chosen feature. Here, we will describe five digit-independent
features for any handwritten digits (grey scaled images) followed by a digit specific
problem domain.

I. Position of the digit: The image frame can be divided into four basic regions
like the figure below. This feature can be avoided if we can crop out the digit
from any corner of the image.

II. Size of the digit: We can consider 3 different sizes of digits; Small (0-25%),
Medium (26-50%) and Large (51-75% of the image frame), assuming 76-100%
ratio of the bounding box to the image does not occur. This feature can also
be avoided by cropping out regular size digits or by padding some extra pixels.

P a g e | 9

III. Brightness/ Contrast: It is the measure of saturation for both black and white.
When the contrast is low, edge detection of the digit becomes tough. We can
consider just two variations in contrast.

IV. Straight/ Tilted: The categories for this feature can be straight, tilted right
and tilted left. There is an opportunity of describing this feature via angles,
but it will complicate the dimension and we can leave it to the learning
process. Here, we are considering just three variations of orientation.

V. Boldness: This feature depends only on the ink width of the pen. Here, we
will consider 3 levels of line thickness. Narrow, medium and wide.

We can also choose a numerical range if we consider number of non-zero
pixels as approximation to boldness. Here, we have chosen 5-20% pixel ratio
digits as accepted or expected.

P a g e | 10

VI. Handwriting: This is not a single feature but a common identity for every
digit specific problem domain. It holds as much as 10 separate domains
varying in feature number as well as feature length. The detailed problem
domain for digit ‘9’ is described in this scope.
Based on different types of handwriting, we have come up with the following
features that can occur while writing ‘9’:

• Loop size:

• Loop ending:

• End line length:

• End line shape:

P a g e | 11

8.1.5 Summary of the problem domain:
Here, we will sum up the entire problem domain to visualize briefly. After the above
analysis, the domain looks like below:

Feature dimension Feature values
Position of the digit Top-left, top-right, bottom-left, bottom-right (4)
Size of the digit Small, medium, large (3)
Brightness/ Contrast High, low (2)
Straight/ Tilted Straight, tilted right, tilted left (3)
Boldness Narrow, medium, wide (3)
Handwriting
(digit specific)

‘9’:
Loop size: small, large (2)
Loop ending: closed, open (2)
End line length: long, short (2)
End line shape: straight, curved (2)

8.1.6 Identifying unsound (never to occur) cases:
An unsound case appears if the defined features depend on each other. For example,
* If it is raining, the ground will be wet. (driving dataset)
* If a house doesn’t have pool, there will be no question of pool quality. (house price
dataset)

For ‘postal code detection’, the features defined for the problem domain are
independent. Hence, all combinations of the features are valid. Based on the
described feature space, the number of combinations can be counted. Taking only
digit independent features into account,

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐 = 4 × 3 × 2 × 3 × 3 = 216

There is only one possible unsound case for this problem which is erroneous
annotations of digits in the dataset.

8.1.7 Conclusion:
After this stage of quality assurance, the analysis of problem domain is complete.
Every possible real-world data can be fit into its dimensions. In the next section, we

P a g e | 12

will build/design expected dataset for our defined problem domain. We will discuss
data management, data augmentation etc.

8.2 Sufficiency of data design:
8.2.1 Definition:
Data design means preparing dataset for machine learning models keeping the
defined problem domain in mind. The above problem domain can be rephrased as
feature space. The objective of this part of AIQM guideline, is to create or gather
enough data points for every region of that feature space.

In order to do so, we can follow either of the following two.
- Build a new dataset
- Work with an existing dataset

8.2.2 Reason for data design:
It seems, data design is the task for developers of an AI, but for the following instance,
an AI evaluator may need to design one.
− Say, the requirement analysis of the developer is different from that of the

evaluator. Then the evaluator will need to design a proper test dataset for
evaluation.

− On the other hand, if both developer and evaluator work on same requirements,
then evaluator can adopt the dataset building process from the developer for his
evaluation.

8.2.3 Build a new dataset:
If we have enough manpower or technology, we can build dataset from scratch. If we
do so,
− We can easily ensure the involvement of all features that we have already

described.
− Also, we can decide the number of data points for each case.
− In this way, the later analysis of ‘Coverage’ and ‘Uniformity’ will be for nothing

but visual representation.

P a g e | 13

8.2.4 Work with an existing dataset:
Building new dataset is currently out of our scope. So, for this report, we will adopt
the most popular hand-written digit-classification dataset ‘MNIST’ to demonstrate
AIQM workflow. Now, the challenges of using predefined dataset are,
− We cannot expect data in all feature dimensions. We need to check the coverage

in later section.
− We also cannot ensure uniform distribution across the feature space.
− Later, from ‘Coverage’ and ‘Uniformity’ analysis, we can find the actual

distribution of the dataset and identify the cases where we will need data
augmentation.

8.2.5 Procedures of data design:
When we use existing dataset for our problem, we will not get data points well
distributed across the defined feature space. So, in this section, we will define some
of the methodologies to augment data or increase data coverage.

• Data augmentation: Data augmentation

methods will be described in detail focusing the
coverage for every region of the feature space.
For example, here we will describe a possible
augmentation process for ‘Brightness/
Contrast’ feature.
Data augmentation by varying contrast: This
is one of the feature dimensions where very few
or no data point of MNIST dataset will lie
upon. To add new data points for this feature,
we can simply darken some of the given data.
Few sample examples are shown here.

• Feature deletion by adding external method: In some feature dimension, we
may not find a suitable data augmentation method for increasing data coverage.
So, alternatively, we may describe some external methods to handle that specific
characteristic feature. Thus, we can exclude that feature from our problem
domain which not only will decrease the number of features but also the number

P a g e | 14

of training or testing data. For example, we
have described an external method for
centering digits in any image frame.
Handling ‘position of the digit’ by external
method: We can easily get the bounding box
of digits for inverted images like MNIST.
Then we can center the box in the frame and
thus can eliminate the requirement ‘position
of the digit’. Here are some examples from
MNIST test set.

8.2.6 Conclusion:
Machine learning is a data driven process, so proper data management is mandatory.
In this section, we have discussed some procedures to that purpose but there can be
some features that cannot be described in similar way. For those features, building
manual dataset is an option otherwise, developer cannot train models for that
characteristic feature as well as evaluator won’t be able to build a complete test set
for evaluation. In that case, the feature will be out of scope of the ML models.

8.3 Coverage of dataset:
8.3.1 Definition:
Coverage of dataset i.e., data coverage means availability of data points across the
feature space. Increasing or fulfilling the coverage criterion is the work of developers.
As an evaluator, we need to identify empty spaces in problem domain. In this section
we will analyze the coverage of problem domain and give knowledge about required
data. Various procedures are described here associated data coverage.

8.3.2 Determining data coverage:
Here, we will do coverage analysis on ‘Area’ feature using MNIST dataset. The feature
is defined as the area of the minimum parallelogram covering the digits. The
mathematical domain of this feature is [0,784] since the size of MNIST image data is
28X28. According to our defined problem domain, ‘Area’ feature contains three levels of
categories.

P a g e | 15

Figure 9: A sample bounding box; defines the measurement of ‘Area’ feature.

- Small: digit covers (0-75 pixels) of the image frame
- Medium: digit covers (75-200 pixels) of the image frame
- Large: digit covers (200-500 pixels) of the image frame

Here, we have calculated the ‘Area’ for all test images and got the following
distribution.

Figure 10: (a) Distribution along feature dimension and (b) Data coverage using

defined boundary values; for ‘Area’ feature.

We can see, it is not an even distribution but there is data in all defined region of the
feature space. To quantify the data coverage, we have got,
- Small: 3954
- Medium: 4447
- Large: 1598
So, the targeted feature dimension has data in all regions. This coverage calculation
is like K-multi-section coverage defined in supporting documents.

P a g e | 16

We can also take the range of areas found in the dataset and compare it with defined
values of the feature. It will give a numerical rank to data coverage. To express
mathematically, if 𝑥𝑥 ∈ 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐,𝑜𝑜𝑜𝑜𝑁𝑁 𝑐𝑐𝑡𝑡ℎ𝑜𝑜𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁,

𝐶𝐶𝑜𝑜𝐶𝐶[𝑥𝑥(𝑐𝑐)] =
|𝑁𝑁𝑐𝑐𝑥𝑥{𝑥𝑥(𝑐𝑐)}−𝑁𝑁𝑐𝑐𝑐𝑐{𝑥𝑥(𝑐𝑐)}|

| ℎ𝑐𝑐𝑖𝑖ℎ𝑛𝑛 − 𝑙𝑙𝑜𝑜𝑙𝑙𝑛𝑛|

𝐶𝐶𝑜𝑜𝐶𝐶[𝑀𝑀𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀(′𝑐𝑐𝑐𝑐𝑠𝑠𝑁𝑁′)] =
|500− 5.75|

| 500− 0| = 0.9885

Coverage of test dataset for ‘Area’ feature has been calculated above. This coverage
analysis is described as conventional coverage. Earlier researches on ‘postal code
analysis’ found some different approaches to calculate data coverage. Such as,
a. Value-level coverage

o Conventional coverage
o K-multi-section coverage
o Boundary coverage

b. Pattern-level coverage
c. Extended variants

Definitions and experimental results of these coverage indicators are reported in
supporting documents.

8.3.3 Coverage using Surprise Adequacy:
‘Surprise Adequacy’ can be used as a metric to define data coverage/ diversity of
dataset. DSA is a ratio of distance from test input (x) to its nearest same labeled
input (xa) and distance from input (xa) to nearest other class input (xb). [Reference:
Guiding Deep Learning System Testing Using Surprise Adequacy;
https://arxiv.org/pdf/1808.08444.pdf]

Experiments:
Based on the definition of ‘Distance-based Surprise Adequacy’ (DSA) and ‘Surprise
Coverage’ (SC), we have experimented with MNIST dataset to calculate the values
of DSA of the test dataset. It simply depicts the similarity and difference between
test and training data. The model used for this experiment is summarized below.

https://arxiv.org/pdf/1808.08444.pdf

P a g e | 17

ConvNet(

 (layer1): Sequential(

 (0): Conv2d(1, 8, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

 (1): ReLU()

 (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

)

 (layer2): Sequential(

 (0): Conv2d(8, 24, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

 (1): ReLU()

 (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

)

 (drop_out): Dropout(p=0.5, inplace=False)

 (fc1): Linear(in_features=1176, out_features=1000, bias=True)

 (fc2): Linear(in_features=1000, out_features=10, bias=True)

)

We have considered different activation layers in CNN for calculating ‘Activation
Traces’ (ATs) and plotted the results of accuracy vs. DSA changing.

Figure 11: Changes in accuracy with the changes in DSA.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.75

0.8

0.85

0.9

0.95

1

Convolutional layer1

Ascending DSA

Descending DSA

Random

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.75

0.8

0.85

0.9

0.95

1

Ac
cu

ra
cy

Convolutional layer 2

Ascending DSA

Descending DSA

Random

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Output layer

Ascending DSA

Descending DSA

Random

P a g e | 18

It is evident that, low surprise data has higher accuracy than high surprise data, i.e.,
higher the DSA score, higher the probability of model failure will be. We can
calculate AI model’s SC and accuracy for any feature of our defined problem domain.
For example, if ‘digit area’ and ‘length’ are features of the problem domain, we can
calculate SC and accuracy along those feature dimensions. Below, we have presented
the results got from DSA analysis.

Figure 12: Distribution of MNIST (test dataset) along the feature ‘Area’ & ‘Length’.

Table: Divisions of feature ‘Area’
Small (0, 75) Medium (75, 200) Large (200, 500)

Data ratio 39.55% 44.48% 15.97%

SC (layer1) 0.7438 0.7250 0.5687

distribution of "Area"

0 50 100 150 200 250 300 350 400 450 500

0

100

200

300

400

500

600

700

800

900

Distribution of 'length'

0 10 20 30 40 50 60 70

0

100

200

300

400

500

600

700

P a g e | 19

SC (layer2) 0.7375 0.7312 0.5500

SC (output layer) 0.8063 0.8063 0.6375

Accuracy 0.9901 0.9897 0.9906

Table: Divisions of feature ‘Length’

Small (0, 25) Medium (25, 50) Large (50, 75)

Data ratio 19.07% 67.24% 13.69%

SC (layer1) 0.6750 0.7750 0.5938

SC (layer2) 0.6625 0.7813 0.5375

SC (output layer) 0.7000 0.8875 0.6250

Accuracy 0.9911 0.9899 0.9890

Figure 13: Graphical representation of SC and accuracy for each divisions of the

features; ‘Area’ & ’Length’.

P a g e | 20

we can also combine these two attributes for pair-wise analysis. The divisions of the
feature space are shown in the following figure. As per definition, there are 9 possible
segments of the feature space holding unique feature combination.

Figure 14: Data (MNIST; test data) distribution across 2-dimensional

(‘Area’, ’Length’) feature space.

Then, we can calculate the data ratio, the surprise coverage (SC) and accuracy for
the data of each section as below,

Table: Data coverage analysis within a 2-dimensional problem domain

Data ratio Area
small medium large

Length small 0.1296 0.2546 0.0113
medium 0.0438 0.3119 0.0891
large 0.0172 0.1059 0.0365

SC (layer1) Area
small medium large

Length small 0.6500 0.6500 0.3500
medium 0.4750 0.6438 0.5625
large 0.3813 0.5375 0.4438

Accuracy Area
small medium large

Length small 0.9907 0.9898 0.9912
medium 0.9932 0.9904 0.9854
large 0.9942 0.9887 0.9973

0 50 100 150 200 250 300 350 400 450 500

Area

0

10

20

30

40

50

60

70

Le
ng

th

P a g e | 21

8.3.4 Identifying rare/corner cases:
Coverage analysis will reflect the necessity of data points in determined regions of
feature space. According to definition, the combinations of features for which there
is no data can be called ‘risky case’. In real world,

− If a risky case occurs in normal frequency, then dataset preparation is faulty.
− If a risky case occurs in low frequency, then it will be considered as rare/corner

case.

For example, from the above coverage calculation, we have found, there is no large-
scale digit image present in the training dataset where there is a probability of
getting such images in real time operation. So, large-scale digit images are corner
cases.

Corner case detection based on DSA: SA can describe the novelty between testing
data and training dataset. For an individual testing data point, SA describes its
difference/similarity to the whole training data. Therefore, SA can be considered a
useful metric to capture the corner cases. The set of corner cases is defined as follows.

𝐶𝐶𝑜𝑜𝑁𝑁𝑐𝑐𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐: {𝑥𝑥| 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 + 𝑝𝑝𝑁𝑁𝑁𝑁𝑐𝑐) ≠ 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥), |𝑝𝑝𝑁𝑁𝑁𝑁𝑐𝑐| < 𝜀𝜀}

Here, we can still use the DSA as a measurement, and get the variation of Accuracy
vs. that of DSA. Then, we can further analyze the relationship between SA and
corner cases.

We have used the CNN described in the upper section. The testing accuracy is 99%,
and there are total 100 images that are incorrectly classified. Referring to the
accuracy vs DSA graph in Fig 11, it is seen when the values of DSA are high, the
accuracy locates in [0.6-0.8], implying not all of outliers have high values of DSA.
Since, DSA ranking based on ‘output layer shows minimum accuracy at higher DSA
values, it can detect the most incorrectly classified images as corner cases. The
following input images have the largest DSA based on output layer.

P a g e | 22

Images Labels

Actual label

 [8 2 6 2 7 8 6 0

 8 9 5 7 7 7 3 8

 6 6 0 8 9 5 3 4

 9 5 9 8 4 8 3 8

 1 7 6 9 0 9 7 6]

Predicted Label (13)

 [7 7 4 0 9 7 6 7

 7 9 7 2 3 9 5 8

 6 6 8 0 9 5 3 9

 1 6 9 9 4 8 7 8

 1 9 5 4 6 1 8 1]

Among these high DSA input images, 27 images have been predicted incorrectly
which are corner cases for the model. Still there are 13 correctly predicted images,
therefore we need an improved metric to identify corner cases.

There are three proposed modifications on DSA calculation [Reference: Corner Case
Data Description and Detection; https://arxiv.org/pdf/2101.02494.pdf]. To improve
corner case detection metric based on DSA, we have used those modifications and
compared their results and output to select the best DSA metric for our problem
space.

We have applied these new definitions of DSA and from model prediction on high
DSA inputs, we got corner case data for each modification. In the following table, we
have compared three modified DSA’s performance in corner case detection. For
activation trace calculation, we have used output layer only.

https://arxiv.org/pdf/2101.02494.pdf

P a g e | 23

Images Labels

DSA1

True label

[7 5 6 7 0 7 3 0

 6 2 2 8 8 9 0 5

 8 7 8 5 9 2 4 1

 4 9 8 9 8 8 7 2

 9 7 7 5 7 7 9 6]

Predicted Label (8)

[8 6 1 1 7 2 7 8

 5 8 7 0 8 4 6 3

 7 9 0 7 4 2 9 2

 9 9 8 9 8 9 3 0

 5 3 1 5 9 7 4 4]

DSA2

True label

[2 5 7 7 4 2 8 7

 2 3 9 1 3 9 8 0

 0 0 4 2 4 8 2 4

 4 6 2 2 5 8 7 7

 4 2 9 7 5 9 7 7]

Predicted Label (9)

[0 6 2 8 9 8 9 1

 8 8 9 2 8 9 7 7

 6 8 9 2 4 7 0 9

 9 1 8 2 0 8 2 7

 4 0 4 7 7 0 2 3]

P a g e | 24

DSA3

True label

[7 5 7 8 2 0 2 6

 8 6 9 4 0 7 3 5

 8 6 6 9 9 9 0 4

 9 7 7 5 1 6 8 5

 6 8 9 5 7 9 9 2]

Predicted Label (3)

[2 6 8 0 7 7 0 5

 7 1 4 9 8 3 7 7

 7 6 4 3 3 8 6 9

 5 3 1 0 2 6 2 3

 1 9 7 5 2 4 4 8]

From the results, we can see that DSA3 is the most successful in identifying inputs
where model shows erroneous behavior. So, we can use DSA3 definition on
adversarial data to get mostly corner cases.

8.3.5 Feature deletion:
Based on the coverage results, we need design data properly. In this process, we may
find some features or some ranges of values of features which we can exclude from
the problem domain.

For example, we can do feature-based data mutation testing to get model behavior
on dataset structure. Any unchanged output means the mutation doesn’t affect
model’s performance; hence we can omit the feature or values of feature from our
feature space.

8.3.6 Conclusion:
This AIQM criterion is for data evaluation, describing data coverage over problem
domain. From this analysis, we can define learning capability from training dataset
and performance measuring capability from test dataset. To improve data coverage,
we need to rely on the previous section, ‘data design’. In the following section, we
will analyze the distribution of data i.e., uniformity/ evenness of dataset.

P a g e | 25

8.4 Uniformity of dataset:
8.3.1 Definition:
This AIQM criterion covers computation of dataset distribution across the defined
feature space. While coverage analysis was searching data in every corner of the
feature space, Uniformity analyzes data density in those regions. In this section, we
will compute as well as visualize dataset distribution to decide upon its uniformity.

8.3.2 Determining data distribution from visual representation:
Let’s say we want to analyze data distribution on ‘boldness’ feature from visual
perspective.
Measuring thickness of handwritten digits in images can be hard. But if we consider
the fact that bolder digits will have more pixels, we can roughly estimate the
distribution of the numbers for boldness. For this we can consider drawing contours
instead of bounding boxes.

Figure 15: Data distribution based on digit boldness.

In the above distribution graph, x-axis holds % of pixels constructing digits. So, we
can see that, there is a normal distribution along x-axis up to 20%. The distribution
is not completely uniform, but the dataset holds good amount of data for our selected
range of ‘boldness’.

8.3.3 Computing data evenness:
According to the above coverage analysis, a simple indicator could be proposed to
evaluate the evenness of data. We can use TPCov idea for calculating uniformity.

When considering the evenness property, the above coverages could be developed as
new indicators. For example, the simplest value coverage could be developed as top
p% coverage, which implies that the ratio of region having p% of data points with

P a g e | 26

highest density and the original coverage, so definitions are expressed as below.

𝑀𝑀𝑇𝑇𝐶𝐶𝑜𝑜𝐶𝐶[𝑥𝑥(𝑐𝑐)] =
|{𝑀𝑀|𝑑𝑑𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑(𝑀𝑀) = 𝑝𝑝%}|

ℎ𝑐𝑐𝑖𝑖ℎ_𝑐𝑐 − 𝑙𝑙𝑜𝑜𝑙𝑙_𝑐𝑐

Now, using the TPCov to evaluate evenness, the indicator is defined as the difference
between TPCov and p%, as

𝐸𝐸𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 = |𝑀𝑀𝑇𝑇𝐶𝐶𝑜𝑜𝐶𝐶 − 𝑝𝑝%|

If the value of EIerr is low, implying the data is evenly distributed, as shown in the
following figure.

Figure 16: An approximate data distribution to aid visualization of evenness

computation.

If we consider different values of p%, we could further compare values of coverage
indicators with p%. In this way, we can refer to the “area under the curve (AUC)” to
measure the performance of evenness, defined as

𝐴𝐴𝐴𝐴𝐶𝐶 = 𝑐𝑐𝑁𝑁𝑁𝑁𝑐𝑐{𝑐𝑐𝑜𝑜𝐶𝐶𝑁𝑁𝑁𝑁𝑐𝑐𝑖𝑖𝑁𝑁(𝑝𝑝):𝑝𝑝 ∈ (0, 100%)} = � 𝐶𝐶𝑜𝑜𝐶𝐶𝑁𝑁𝑁𝑁𝑐𝑐𝑖𝑖𝑁𝑁(𝑝𝑝)𝑑𝑑𝑝𝑝
1

0

8.3.4 Reducing biasness of data collection:
To increase rare case density, the data gathering procedure will be biased. This can
harm ML model’s average performance. So, we need an optimum level of biasness
towards data collection.

8.3.5 Conclusion:
Uniformity is more important criterion for training dataset than testing. It
inherently deals with output biasness of machine learning models. By fulfilling this
criterion, a model can achieve greater performance, corner case accuracy and

P a g e | 27

avoiding risk factors.

8.5 Correctness of machine-learning models:
8.5.1 Definition:
Accuracy is the primary measurement of model’s correctness which evaluates its
performance. In the following section, we will define some useful correctness
measurement metrics or key performance indicator (KPI) followed by their actual
use to describe a trained model’s output.

8.5.2 Different Accuracy measures/ Key performance indicator (KPI):
Since postal code analysis is a classification problem, the commonly used
performance metric is confusion matrix. This matrix can be visualized in the
following way.

Confusion matrix
Predicted output

Positive Negative

Actual
output

Positive TP FN

Negative FP TN

This is a simple confusion matrix for binary classification. There are four possible
output behavior.
TP = when predictor predicts positive correctly
FP = when predictor predicts positive incorrectly
FN = when predictor predicts Negative incorrectly
TN = when predictor predicts Negative correctly

Based on this matrix, we can define some useful and popular performance measures.
Accuracy: This is the measure of correct prediction by the model which can be
defined as,

𝐴𝐴𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑑𝑑 =
𝑀𝑀𝑇𝑇 + 𝑀𝑀𝑁𝑁

𝑀𝑀𝑇𝑇 + 𝑀𝑀𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁

Recall: This is a ratio of correct positive prediction to the total number of positive
data which can be defined as,

P a g e | 28

𝑅𝑅𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 =
𝑀𝑀𝑇𝑇

𝑀𝑀𝑇𝑇 + 𝐹𝐹𝑁𝑁

Precision: This is a ratio of correct positive prediction to the total number of
predicted positives which can be defined as,

𝑇𝑇𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐 =
𝑀𝑀𝑇𝑇

𝑀𝑀𝑇𝑇 + 𝐹𝐹𝑇𝑇

F-measure/ F-score: This is the harmonic mean of precision and recall which can
be defined as,

𝐹𝐹 −𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁 =
2 × 𝑅𝑅𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 × 𝑇𝑇𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐
𝑅𝑅𝑁𝑁𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 + 𝑇𝑇𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐

For example, we have chosen a CNN to train on MNIST dataset for ‘postal code
analysis’ problem. The model architecture is given below.

Architecture Conv(24,24,24)+ReLU
MaxPooling(12,12)
Conv(8,8,64)+ReLU
MaxPooling(4,4)
Flatten()
FC(1000)+ReLU
FC(10)+Softmax

Number of trainable
parameters

1,074,098

Train accuracy 99.26%
Test accuracy 99.50%

KPI measures other than accuracy is calculated separately for all classes using test
set and presented in the table below.

 0 1 2 3 4 5 6 7 8 9

Recall 0.998 0.999 0.998 0.998 0.995 0.990 0.987 0.992 0.996 0.995

Precision 0.994 0.996 0.995 0.994 0.994 0.994 0.999 0.997 0.995 0.991

F-measure 0.996 0.998 0.997 0.996 0.994 0.992 0.993 0.995 0.995 0.993

The test accuracy of the trained model is very good, but we can get in depth behavior
of the model if we see recall, precision, and F-measure. From the results of recall,
the classifier has the highest accuracy in predicting ‘1’ and the lowest accuracy in

P a g e | 29

predicting ‘6’. From the results of precision, the classifier gives the lowest wrong
prediction for ‘6’ and the highest wrong prediction for ‘9’. From the results of F-
measure, it can be said that the overall performance is best for digit ‘1’ and worse for
digit ‘5’.

8.5.3 Defining models’ behavior & finding corner cases:
Until now, we are deciding on corner cases by observing data coverage or data
distribution. But actual corner cases can be identified from models’ behavior on test
data. Those input data for which a model outputs wrong prediction can be called
unidentified cases for that model. If we can separate input data for which similar
models will output incorrectly, we can have corner cases for that specific solution.
There is a study which prioritizes input data for which models’ show erroneous
behavior.
“Input Prioritization for Testing Neural Networks”
https://ieeexplore.ieee.org/abstract/document/8718224

8.5.4 Conclusion:
Accuracy is only one aspect of models’ performance, but in this scope, we will
evaluate a model from various perspectives. For example, the accuracy of identifying
positive and negative separately, identifying corner cases based on models’ behavior
and so on. In the next section, we will define and evaluate the robustness i.e.,
stability of ML models.

8.6 Stability of machine-learning models:
8.6.1 Definition:
Stability is one of the most important characteristics of an ML model which
determines model behavior due to perturbation both in input data and model. “The
degree to which a system or component can function correctly in the presence of
invalid inputs or stressful environment conditions”, the IEEE definition of
robustness.

Let ‘S’ be a machine learning system. Let E(S) be the correctness of ‘S’. Let δ(S) be
the machine learning system with perturbations on any machine learning
components such as the data, the learning program, or the framework. The
robustness of a machine learning system is a measurement of the difference between
E(S) and E(δ(S)):

https://ieeexplore.ieee.org/abstract/document/8718224

P a g e | 30

𝑁𝑁 = 𝐸𝐸(𝑀𝑀)− 𝐸𝐸(𝛿𝛿(𝑀𝑀))

Robustness thus measures the resilience of an ML system’s correctness in the
presence of perturbation. Here, we will define some robustness measures followed
by experimental results for ‘postal code analysis’.

Robustness can be defined for two basic components of an AI: data and model. In the
following section, we have considered these two measures separately.

8.6.2 Robustness due to perturbation in data:
Related to data, this robustness measure depends on adversarial examples. These
examples can be created within proximity of actual test data. The vector distance
between original data and adversarial data is considered the measure of robustness.
There are various metrics for calculating robustness/stability.

• Local Adversarial Robustness: Let x be a test input for an ML model h. Let
x’ be another test input generated via conducting adversarial perturbation
on x. Model h is δ-local robust at input x if for any x’,

∀𝑥𝑥′: �|𝑥𝑥 − 𝑥𝑥′|�𝑝𝑝 = 𝛿𝛿 → ℎ(𝑥𝑥) = ℎ(𝑥𝑥′)

�|∗|�𝑝𝑝 represents p-norm for distance measurement. The commonly used p

cases in machine learning testing are 0,1 and 2.

• Global Adversarial Robustness: Let x be a test input for an ML model h. Let
x’ be another test input generated via conducting adversarial perturbation on
x. Model h is δ-global robust if for any x and x’,

∀𝑥𝑥, 𝑥𝑥′: �|𝑥𝑥 − 𝑥𝑥′|�𝑝𝑝 = 𝛿𝛿 → ℎ(𝑥𝑥) − ℎ(𝑥𝑥′) ≤ 𝜖𝜖

Based on the above definitions of adversarial robustness, we could use the
value of δ as the robustness measurement directly. However, to evaluate
different model’s robustness performance, we may need to generalize these
robustness metrics into relative ones. Here, assuming the input data is
normalized into [0,1]d where d is the dimensionality, then the relative
robustness metrics could be defined as below,

P a g e | 31

𝑁𝑁1 =
𝛿𝛿1

0.5 × 𝑑𝑑
 , �|𝑥𝑥 − 𝑥𝑥′|�1 = 𝛿𝛿1

𝑁𝑁2 =
𝛿𝛿2

√0.5 × 𝑑𝑑
 , �|𝑥𝑥 − 𝑥𝑥′|�2 = 𝛿𝛿2

𝑁𝑁∞ =
𝛿𝛿∞
0.5

 , �|𝑥𝑥 − 𝑥𝑥′|�∞ = 𝛿𝛿∞

There are several studies on robustness (δ) measurement. For example,
‘CNN-Cert: AN Efficient Framework for Certifying Robustness of
Conventional Neural Networks’
(https://arxiv.org/abs/1811.12395)

‘Towards Fast Computation of Certified Robustness for ReLU Networks’
[Fast-Lin]
(https://arxiv.org/abs/1804.09699)

We can use the measured δ value to calculate relative robustness formulated
above. For example, taking MNIST data as an example, the results of CNN-
Cert and Fast-Lin have been used to calculate relative robustness metrics.

Certified lower bounds (δ) Relative robustness (r) (×10-2)

Lp norm CNN-Cert Fast-Lin CNN-Cert Fast-Lin

MNIST

4 layers

5 filters

8680 hidden nodes

L∞

L2

L1

0.0491

0.1793

0.3363

0.0406

0.1453

0.2764

9.82

0.91

8.58

8.12

0.73

7.05

MNIST

4 layers

20 filters

34720 hidden nodes

L∞

L2

L1

0.0340

0.1242

0.2404

0.0291

0.1039

0.1993

6.80

0.63

6.13

5.82

0.52

5.08

MNIST

5 layers

5 filters

10680 hidden nodes

Lꚙ

L2

L1

0.0305

0.1262

0.2482

0.0248

0.1007

0.2013

6.10

0.64

6.33

4.96

0.51

5.14

https://arxiv.org/abs/1811.12395
https://arxiv.org/abs/1804.09699

P a g e | 32

8.6.3 Robustness due to perturbation in model:
Related to model, this robustness measure depends on model perturbation. There
are various methods for calculating model level robustness.

• Parameter Robustness: Let w be the parameter of an ML model h. Let w’ be
another parameter generated via adding some slight perturbation on w.
Model h is δw-local robust on parameter perturbation if for any w’,

∀𝑙𝑙′: �|𝑙𝑙 −𝑙𝑙′|�𝑝𝑝 = 𝛿𝛿𝑤𝑤 → ℎ(𝑥𝑥) = ℎ′(𝑥𝑥)

Figure 17: Changes in a linear classifier due to parameter perturbation.

Fig. 17 shows the example of parameter perturbations in AI model’s
robustness evaluation. Compared with the adversarial robustness which
aims at seeking for the minimum distance δmin as the robustness metric, the
parameter robustness utilizes the maximum distance δw max as the robustness
measurement. Moreover, program-level robustness has an advantage of no
generation of adversarial samples and their certification.

• Mutation Robustness: To measure the software mutational robustness, we

formalize it with respect to a software program P (a member of the set of all
software programs Ƥ), a set of mutation operators M (where each m ∈ M is a
function mapping Ƥ →Ƥ), and a test suite T: Ƥ →{true, false}. A program P is
said to pass the test suite if and only if T(P) = true.

P a g e | 33

Given a program P, a set of mutation operators M, and a test suite T such
that T(P) = true, we define the software mutational robustness, written
MutRB(P, T,M), to be the fraction of all direct mutants P’ = m(P), ∀m ∈ M,
which both compile and pass T,

𝑀𝑀𝑁𝑁𝑐𝑐𝑅𝑅𝑀𝑀(𝑇𝑇,𝑀𝑀,𝑀𝑀) =
|{𝑇𝑇′ | 𝑁𝑁 ∈ 𝑀𝑀.𝑇𝑇′ = 𝑁𝑁(𝑇𝑇) ∩ 𝑀𝑀 (𝑇𝑇′) = 𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁}|

|{𝑇𝑇′|𝑁𝑁 ∈ 𝑀𝑀.𝑇𝑇′ = 𝑁𝑁(𝑇𝑇)}|

This measurement can be transferred in AIQM. For example, if we take the
results of DeepMutation as an example, where three studied DL models A,B
and C are tested on MNIST dataset.
[DeepMutation: Mutation Testing of Deep Learning Systems;
https://ieeexplore.ieee.org/abstract/document/8539073]

Model A Model B Model C

Architecture Conv(6,5,5)+ReLU
MaxPooling (2,2)
Conv(16,5,5)+ReLU
MaxPooling (2,2)
Flatten()
FC(120)+ReLU
FC(84)+ReLU
FC(10)+Softmax

Conv(32,3,3)+ReLU
Conv(32,3,3)+ReLU
MaxPooling(2,2)
Conv(64,3,3)+ReLU
Conv(64,3,3)+ReLU
MaxPooling(2,2)
Flatten()
FC(200)+ReLU
FC(10)+Softmax

Conv(32,3,3)+ReLU
Conv(32,3,3)+ReLU
MaxPooling(2,2)
Conv(64,3,3)+ReLU
Conv(64,3,3)+ReLU
Maxpooling(2,2)
Flatten()
FC(200)+ReLU
FC(200)+ReLU
FC(10)+Softmax

Trainable
parameter

107,786 694,402 698,402

Training
Acc.

97.40% 99.30% 99.50%

For each mutation operator, 20 DL mutants were created to acquire mutation
score. The mutation score in DeepMutation and MutRB are complementary
to each other or Mutation_score + MutRB=1. Below, we have shown mutation
scores presented in the literature followed by calculated MutRB scores in
separate tables.

https://ieeexplore.ieee.org/abstract/document/8539073

P a g e | 34

Mutation score (%)
 0 1 2 3 4 5 6 7 8 9
Model A 7.22 8.75 9.03 6.25 8.75 8.19 8.75 9.17 9.72 9.03
Model B 1.59 3.29 8.29 7.44 5.49 4.02 8.17 3.66 5.85 8.41
Model C 8.33 7.95 8.97 9.74 9.74 9.62 9.62 8.97 9.74 7.56

MutRB score (%)

 0 1 2 3 4 5 6 7 8 9

Model A 92.78 91.25 90.97 93.75 91.25 91.81 91.25 90.83 90.28 90.97

Model B 98.41 96.71 91.71 92.56 94.51 95.98 91.83 96.34 94.15 91.59

Model C 91.67 92.05 91.03 90.26 90.26 90.38 90.38 91.03 90.26 92.44

There are some studies which focus on creating adversarial examples
targeting model failure. By adding a scale of perturbation in the input data,
we can also adopt these studies for robustness measurement. Here, we have
listed some of those studies.
− Deepxplore: Automated Whitebox Testing of Deep Learning Systems

https://dl.acm.org/doi/abs/10.1145/3132747.3132785
− Guiding Deep Learning System Testing Using Surprise Adequacy

https://ieeexplore.ieee.org/abstract/document/8812069
− Tensorfuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

http://proceedings.mlr.press/v97/odena19a.html

8.6.4 Conclusion:
Robustness measures indicate models’ performance for unknown inputs or under
new environmental conditions. By the defined KPI for robustness, we can ensure
whether a trained model for postal code analysis meets the requirement level of
stability set by the client/user. Also, this is the last internal quality which will be
evaluating the AI solution. The following AIQM internal properties are for
evaluating other parts of the machine which will support the AI before or during
operation either in public or in a controlled environment.

https://dl.acm.org/doi/abs/10.1145/3132747.3132785
https://ieeexplore.ieee.org/abstract/document/8812069
http://proceedings.mlr.press/v97/odena19a.html

P a g e | 35

8.7 Soundness of components:
8.7.1 Definition:
According to AIQM guideline, the term ‘soundness of components’ means, software
components used for machine learning training stage as well as prediction/ interface
should operate correctly when they are executed in response to training data and
trained ML model respectively. No AI solution is built from scratch. It consists of
numerus components like software components (e.g. image processing software,
python packages and libraries etc.). The following AI components should be
described in details and their quality need to be assured.

8.7.2 Program & open-source libraries:
Python language has been used for developing this AI. It uses various open source
packages which should be version compatible with each other. So, the list of used
packages and their versions should be provided by the developer.

Programing language Version
Python 3.6.12
Package Version
NumPy 1.18.5
TensorFlow 2.3.1
Pillow (PIL fork) 8.0.1

8.7.3 Image processing unit:
This refers to the image capturing of the camera and processing for creating input
images comparable to dataset.
For simplicity, we will be taking images of the post codes with regular camera which
produces 3 channel (RGB) 2-dimensional images. These images will be subject to an
algorithm or program flow that converts them into analogous inputs for the trained
AI model.
As an example, we have taken a general image of a digit (6); written on a white paper
with black ink. We have written a program that converts this image to a black n
white (28, 28) image which is equivalent to MNIST handwritten digit dataset.

Figure 18: Modification on image by ‘Image processing unit’.

P a g e | 36

Inside data preprocessing, python programing language has been used and open
source package ‘Pillow’ has been used as image processing tool.

8.7.4 Unit for external methods:
In this part of the device, we define algorithm for external method to omit certain
problem domain characteristics described in ‘sufficiency of data design’ section. We
need to ensure the correctness of the algorithm.
We have already described an external method to remove a defined feature; ‘position
of the digit’. The developed algorithm for that task will be put after data
preprocessing and before feeding to the model.

Figure 19: Modification on image by ‘External methods unit’.

This unit can be consisting of one or more external methods which will be executed
on the input image sequentially. The algorithm for handling ‘position of the digit’
feature has also been written using python programing language with the help of
open source packages; NumPy and Pillow.

8.7.5 Usage of memory:
We need to define a minimum and maximum usage of memory when the AI device is
in operation.

− Model architecture and weights: AI developers generally use Hierarchical Data

Format (HDF) file (.h5) to store trained AI networks and their weights. In
‘accuracy of machine-learning models’, we have reported results of a trained CNN.
The saved network has 1,074,098 parameters and takes about 12.3MB space on
the hard drive.

− Input data: Input data means camera image data, cropped images, converted
images via preprocessing and external methods. Though it is possible to quantify
the converted image size, the original image will take the largest space on the
hard drive. So, the memory usage by the input data can be defined after complete
design of the machine; the camera, the quality and resolution of the image etc.

P a g e | 37

− Codes/Algorithm: Different algorithms, written by programing languages are
part of the workflow of the machine. These codes do not take much space on hard
drive. For example, the algorithm for the external method described above takes
about 4KB space.

− Dataset for retraining: We need to keep a space for holding dataset for possible
re-training phase at least the size of the actual dataset. For example, MNIST
dataset takes about 52.4 MB space.

− RAM and GPU for network training: If we need to train model in between
operations, we need to define machine specification for that task. For example,
our described model training using MNIST dataset can be done in reasonable
time with 8 GB of RAM and no GPU.

Combining all memory or machine requirements, we can design the memory
allocation of the device.

8.7.6 Time cost:
Time is an issue when applying in real world, it reduces machine’s efficiency. We
need to eliminate any unnecessary time loss in any stage of the machine as well as
direction for improving to faster algorithms.
As an example, for postal code analysis, the most time-consuming task of the entire
workflow is the classification task because majority of the computation occurs in this
part. So, batch execution will be faster and efficient than sequential execution with
the cost of bigger memory requirement.

8.7.7 Software security:
Security is a major concern when machine operates online. Here, we have described
the examples of the theme that the solution designer should consider while building
the application sets with AI/Machine learning functionality.
This document doesn’t refer to the common aspect for the cyber security taken for
the software that doesn’t include the AI/Machine learning functionality also. (For
the reference about the cyber security aspect doesn’t include the AI/Machine
learning, refer to the ISO/IEC 27000 series, NIST SP800 series, NIST Cyber Security
Framework, ISO/IEC 15408 Common Criteria and so on).

Examples: The attack method is developed day by day. So, the following list is
current examples. The solution designer should search the newest information

P a g e | 38

periodically. The annual assessment and the measures are recommended.

 Adversarial example: A machine learning technique that attempts to fool models

by supplying deceptive input with small and intentional perturbations.
"Explaining and Harnessing Adversarial Examples" Goodfellow et al.
https://arxiv.org/pdf/1412.6572.pdf
"Adversarial Examples in the Physical World" ICLR2017 Krakin et al.
https://arxiv.org/pdf/1607.02533.pdf

 Membership inference: Given the huge number of the input, obtaining whether

a data point is from the target model’s training set or not.
“Membership Inference Attacks Against Machine Learning Models” Shokri et al.
https://arxiv.org/pdf/1610.05820.pdf

 Poisoning: Adversarial contamination of training data.

“Manipulating Machine Learning: Poisoning Attacks and Countermeasures for
Regression Learning”
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418594

 Model inversion: Model Inversion Attacks that Exploit Confidence Information

and Basic Countermeasures
https://dl.acm.org/doi/pdf/10.1145/2810103.2813677

 Model extraction: An attack in which an adversary utilizes a query access to the

target model to obtain a new model whose performance is equivalent to the target
model efficiently.
"Stealing Machine Learning Models via Prediction APIs"
https://arxiv.org/pdf/1609.02943.pdf

 Backdoor attack: With a specific trigger by additionally training the malicious

training data, including the specific trigger to the DNN model, the DNN correctly
recognizes normal data without triggers, but the network misrecognizes data
containing a specific trigger as a target class chosen by the attacker.
"Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering"
https://arxiv.org/pdf/1811.03728.pdf

https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1607.02533.pdf
https://arxiv.org/pdf/1610.05820.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418594
https://dl.acm.org/doi/pdf/10.1145/2810103.2813677
https://arxiv.org/pdf/1609.02943.pdf
https://arxiv.org/pdf/1811.03728.pdf

P a g e | 39

8.7.8 Difference between training and operational environment:
Training environment and actual operational environment are often different
especially in applications of machine learning, also behaviors of numerical
calculations often change. In such cases, it is necessary to evaluate differences
between these environments and define how the outcome of the machine will be
affected by this.
For example, ML models train from random initialization to optimized loss function.
This process consists of numerous computation which is done implicitly by the
machine. So, it is very common to differ the results of KPIs in different machines.
We need to evaluate the whole system in various machines so that we can set
probable performance deviations due to change in machine environment.

8.7.9 Conclusion:
Above program components should be defined and assured for quality and security
before the solution goes into operational phase.

8.8 Maintainability of quality during operation:
8.8.1 Definition:
Machines are very much reliable, but they break down too. So, maintenance is a
periodical task and a part of every machine in operational phase. According to AIQM
guideline, ‘this section describes technologies to maintain internal qualities satisfied
at the commencement of operation throughout the operation period’.

8.8.2 Task flow during maintenance:
Here, we will discuss various ‘in operation’ machine fails and procedures to overcome
them. To demonstrate the possible crisis during operational phase, we will be using
contrived dataset based on restricted feature dimension. If we consider ‘Area’ feature
as one of the feature dimensions, we can see train and test set have different
distribution and different ranges of values.
From Fig. 20, ‘Area’ values in train set ranges from 22.75 ~ 315.125 where in test set
ranges from 5.75 ~ 505.25. if we consider the train set has defined range of problem
domain, then we will have a test set having same range of values. We have taken a
subset of original test dataset which represents the expected test set (say ‘test_in1’)
and another subset of test dataset which represents operational inputs lies beyond
the defined region (say ‘test_out1’).

P a g e | 40

Figure 20: Data distribution based on ‘Area’ feature of train and test set

respectively.

We will consider ‘contrast’ feature as well. Since all the images from the test set (say
‘test_in2’) are of high contrast, we have used one of the data design procedures to
build a similar test dataset (10,000 images; say ‘test_out2’) to represent possible
operational inputs.

Figure 21: Example inputs from test_in2 and test_out2 respectively.

8.8.2.1 Accuracy (KPI) monitoring:

Periodically, we need to evaluate the trained model with diverse test inputs (test_in1).
The test set should contain data for all possible classes as well as combinations of
cases inside problem domain. For example, here we have evenly class distributed
‘test_in1’ having full coverage across ‘Area’ feature (Fig. 22).
Secondly, test_in2 is the complete test dataset having even distribution of digits and
high contrast images. The following table shows the results of accuracy monitoring.
Test set No. of images Accuracy

test_in1 9,450 99.21%

test_in2 10,000 99.20%

P a g e | 41

Figure 22: Class distribution and data distribution of test_in1 set.

8.8.2.2 Continuous data collection and labeling:

During operation, the model always gets new/ unknown inputs. It is necessary to
store these data to analyze current data distribution in problem space. This work
consists of data gathering and labeling. In most of the cases, labeling is a manual
process having high cost. In this phase, a new dataset will be built upon operational
inputs. For example, complete test set together with test_out2 can be the set of
operational inputs.

8.8.2.3 Analyzing novelty of model input:

From the set of operational inputs, we need to measure data novelty by analyzing
coverage and distribution. We can also use distance or similarity-based methods to
identify novelty so that we may estimate model’s performance based on previous
robustness measures. Thus, we can build a novel dataset.
Here, we have taken test_out1 and test_out2 dataset described as outside the scope
of problem domain. We will consider them as example of novel datasets for this step
of maintenance. From the following table, we can understand the effect of novel data
on our trained model.
Test set No. of images Accuracy

test_out1 550 99.09%

test_out2 10,000 97.66%

8.8.2.4 Analyzing re-training necessity:

Although we train the best model, showing the best performance, it will deteriorate

P a g e | 42

with time. This happens because of changes in inputs or changes in environment.
From the above table, we can see, test_out1 has small but test_out2 has significant
negative effect on the trained model. So, it is necessary to re-train the model.
However, we need to be careful with re-training so that the model doesn’t forget its
previous learning.
For example, we have retrained the same model with training images (60,000) and
their low contrast versions (60,000); evaluated on test_in2 and test_out2. The results
are in the following table.
Test set No. of images Previous accuracy Latest accuracy

test_in2 10,000 99.20% 99.40%

test_out2 10,000 97.66% 99.40%

8.8.2.5 Model output monitoring:

Model output needs to be analyzed to check whether it gives finite and valid results.
Aside from wrong prediction, a model can also output unidentifiable numbers (i.e.,
Nan value). So, the model should be validated on this especially, after re-training.
For example, in (Reference: ‘TensorFuzz: Debugging Neural Networks with
Coverage-Guided Fuzzing’ https://arxiv.org/pdf/1807.10875.pdf), a tool is described to
find input that results Nan value.

Figure 23: Left: the accumulated corpus size of the fuzzer while running, for 10

runs. Right: an example satisfying image found by the fuzzer.

First, it chooses an image from input corpus and mutates it by adding noises. Then
it passes the image through an ML model and computes the output values and

https://arxiv.org/pdf/1807.10875.pdf

P a g e | 43

activation vector. If any of the output values are Nan, the program halts; otherwise
activation vector is compared from the previous runs using nearest neighbor
algorithm to determine new coverage and add that mutated image to input corpus.
The newest element is drawn from the corpus for the next run.
In Fig. 23, the image looks completely noise, but it did satisfy the condition of Nan
output by the model. This sort of example is relevant if the AI solution runs on time
scale; when there is no input, it will take noise. But if the solution is input dependent,
this test is unnecessary.

8.8.2.6 Creating additional dataset:

Creating a new or additional dataset and re-training the model is the only way to
expand the solution space of an AI problem (Postal code analysis). For example, if
US postcode classifier is brought to Japan, it needs to retrain itself using Japanese
handwritten digits to obtain equivalent performance.

8.8.3 Conclusion:
Maintenance of machine learning technology helps improving its models both in
accuracy and robustness. It also helps to build a long-lasting model, real world
distribution of data, also corner cases. Therefore, implementing maintenance
procedures can develop better machine learning solution gradually.

	はじめに
	About this report
	Reference report for application of MLQM guideline in object detetcion in autonomous driving
	1. Purpose of the technical report:
	2. Expected outcomes:
	3. Author’s role:
	4. Product specifications:
	4.1 Model Specifications:
	4.2 Safety specifications:
	4.3 KPI specifications:
	4.3.1 Object detection task:
	4.3.2 Scene classification task:

	5.Proof of Concept (PoC) phase:
	5.1 Initial investigation of existing dataset:
	5.2 Distribution of data:
	5.2.1 Classification task:
	5.2.2 Object detection task:

	5.3 Preliminary training of contender models:
	5.3.1 Preprocessing steps:
	5.3.2 Hyper-parameter specifications:
	5.3.3 Validation results:
	5.3.4 Additional information:

	5.4 Insights from PoC phase:

	6. Designing development phase:
	6.1 Incorporation of MLQM guideline:
	6.2 Adjustment of standards of quality management:

	7. Internal quality evaluation using MLQM guideline
	7.1 Sufficiency of requirement analysis:
	7.1.1 Definition of ‘Sufficiency of requirement analysis’:
	7.1.2 Redefining problem domain:
	7.1.3 Proposed problem domain:
	7.1.4 Example of training data described using the proposed domain:
	7.1.5 Comparison of existing domain with proposed domain
	7.1.6 Approaches considered to adopt existing dataset with proposed domain
	7.1.7 Re-designing dataset:

	7.2 Coverage for distinguished problem cases:
	7.2.1 Definition of ‘coverage of distinguished problem cases:
	7.2.2 Steps required for evaluation:
	7.2.3 Example of evaluation process:
	7.2.3.1 Considered domain details:
	7.2.3.2 Summary of assessment result:

	7.2.4 Identifying special cases:
	7.2.4.1 Unsound cases:
	7.2.4.2 Safety critical cases/Risky cases:

	7.3 Coverage of dataset
	7.3.1 Definition of ‘Coverage of dataset’:
	7.3.2 Steps required for evaluation:
	7.3.3 Example evaluation process:
	7.3.3.1 Presence of data in unsound cases:
	7.3.3.2 Presence of data in risky cases:

	7.3.4 Insights from recorded results:

	7.4 Uniformity of dataset
	7.4.1 Definition of ‘Uniformity of dataset’
	7.4.2 Steps required for evaluation
	7.4.3 Example evaluation process
	7.4.3.1 Evaluating general distribution of dataset
	7.4.3.2 Evaluating distribution of data across combined cases

	7.5 Correctness of the trained model
	7.5.1 Definition of ‘Correctness of the trained model’
	7.5.2 Decisions from PoC phase:
	7.5.3 Evaluation procedure for correctness of object detection models
	7.5.3.1 Removing noise information in the dataset
	7.5.3.2 Specific training for the detection models

	7.6 Stability of the trained model
	7.6.1 Definition of ‘stability of the trained model
	7.6.2 Steps required for evaluation
	7.6.3 Evaluating generalization capability
	7.6.4 Evaluating robustness to adversarial images
	7.6.4.1 Complications of adversarial attack on object detection models:
	7.6.4.2 Attempted approaches:
	7.6.4.3 Possible solutions:
	7.6.4.4 Adapting adversarial attacks using a different NN
	7.6.4.5 Adapting surprise adequacy to work with MobileNetv2
	7.6.4.6 1-Pixel Change

	7.7 Dependability of underlying software system
	7.7.1 Definition of ‘Dependability of underlying software system’:
	7.7.2 Correctness of algorithms
	7.7.3 Soundness of open-source elements:
	7.7.4 Dependability of hardware in training and operational environment:
	7.7.5 Soundness in usage of memory
	7.7.6 Efficiency in training time and inference time:

	7.8 Maintainability of quality during operation
	7.8.1 Definition of ‘maintainability of quality’
	7.8.2 Accuracy monitoring
	7.8.3 Model output and input data monitoring
	7.8.4 KPI monitoring
	7.8.5 Example: KPI - Residential + foggy

	Glossary:
	Appendix:
	Automotive Safety Integrity Level (ASIL):

	References

	Reference for AI Vision Inspection
	1 Purpose and background
	2 Expected outcomes
	3 Author’s role
	4 Introduction of possible datasets
	5 Quality assurance procedures using AIQM guideline
	5.1 Sufficiency of requirements analysis
	5.1.1 General definition
	5.1.2 Contents in vision inspection
	5.1.3 Possible approaches and experiments
	5.1.3.1 Product specification
	5.1.3.2 Problem domain
	5.1.3.3 KPI requirements at the POC Phase

	5.1.4 Quality level requirement

	5.2 Sufficiency of data design
	5.2.1 General definition
	5.2.2 Contents in vision inspection
	5.2.3 Possible approaches and experiments
	5.2.3.1 Data augmentation
	5.2.3.2 Attribute combination and case division
	5.2.3.3 Corner cases/high-risk case

	5.2.4 Quality level requirement

	5.3 Coverage of dataset
	5.3.1 General definition
	5.3.2 Contents in vision inspection
	5.3.3 Possible approaches and experiments
	5.3.3.1 Data coverage
	5.3.3.2 Attribute coverage
	5.3.3.3 Neuron-based coverage
	5.3.3.4 Surprise coverage
	5.3.3.5 Example and experiments

	5.3.4 Quality level requirement

	5.4 Uniformity of dataset
	5.4.1 General definition
	5.4.2 Contents in vision inspection
	5.4.3 Possible approaches and experiments
	5.4.3.1 Evenness between real data and collected data
	5.4.3.2 Evenness between training and testing sets
	5.4.3.3 Evenness between different cases

	5.4.4 Quality level requirement

	5.5 Correctness of the trained model
	5.5.1 General definition
	5.5.2 Contents in vision inspection
	5.5.3 Possible approaches and experiments
	5.5.3.1 General correctness metrics
	5.5.3.2 Correctness on corner case data detection

	5.5.4 Quality level requirement

	5.6 Stability of the trained model
	5.6.1 General definition
	5.6.2 Contents in vision inspection
	5.6.3 Possible approaches and experiments
	5.6.3.1 Mathematical definition
	5.6.3.2 Robustness measurement methodology
	5.6.3.3 Robustness measurement with consideration of corner case data
	5.6.3.4 Experiment results

	5.6.4 Quality level requirement

	5.7 Dependability of underlying software system
	5.7.1 General definition
	5.7.2 Contents in vision inspection
	5.7.3 Possible approaches
	5.7.4 Quality level requirement

	5.8 Maintainability of quality during operation
	5.8.1 General definition
	5.8.2 Contents and possible approaches
	5.8.3 Quality level requirement

	AIQM_Assessment_Sheet_JP
	表紙
	フロー図
	各STEP入出力一覧
	STEP0 システム要求分析
	STEP1 システムRA（SA)
	STEP2 AI要求分析
	STEP3 データセットアセスメント（DA）
	データ妥当性確認(DV)
	STEP４ 機械学習モデルアセスメント（MLMA)
	STEP5 保全計画アセスメント（RPA)
	STEP6 機能安全（ソフト・ハード）

	AIQM_Assessment_Sheet_EN
	Front cover
	Flow diagram
	Input and Output of the process
	STEP0 System requirement analys
	STEP1 System RA（SA)
	STEP2 AI_requirement_analysis
	STEP3 Dataset_assessment（DA）
	Data validation (DV)
	STEP４ ML_model_assessment（MLMA）
	STEP5 Maintenance assess　(RPA)
	STEP6 Functional Safety(SW-HW)

	Reference For House Price Analysis
	1 Purpose of the technical report:
	2 Expected outcomes:
	3 Author’s role/ perspective of authors:
	4 Problem definition:
	5 Product specification:
	5.1 Model specifications:
	5.2 Data related specifications:
	5.3 KPI specifications:

	6 Introduction of the datasets:
	7 Sample of input data:
	8 Quality assurance procedures using MLQM guideline:
	8.1 Sufficiency of requirements analysis:
	8.1.1 Definition:
	8.1.2 Defining problem domain:
	8.1.3 Data for all possible price ranges:
	8.1.4 Selecting well-defined feature dimensions:
	8.1.5 Selecting in-bound and out of bound areas:
	8.1.6 Identifying unsound cases:
	8.1.7 Conclusion:

	8.2 Sufficiency of data design/ Coverage for distinguished problem domain:
	8.2.1 Definition of ‘sufficiency of data design’:
	8.2.2 Data management in each feature dimension:
	8.2.3 Conclusion:

	8.3 Coverage of dataset:
	8.3.1 Coverage for each combination:
	8.3.2 Identifying rare/corner cases:
	8.3.3 Feature deletion:
	8.3.4 Conclusion:

	8.4 Uniformity of dataset:
	8.4.1 Definition:
	8.4.2 Enough data for each case:
	8.4.3 Conclusion:

	8.5 Accuracy of machine learning models:
	8.5.1 Definition of ‘accuracy of machine learning models’:
	8.5.2 Selecting specific method:
	8.5.3 Performance comparison for different distribution of data:
	8.5.4 Finding corner cases:
	8.5.5 Conclusion:

	8.6 Stability of machine-learning models:
	8.6.1 Definition:
	8.6.2 Specific handling:
	8.6.3 Conclusion:

	8.7 Soundness of components/ Dependability of underlying software system:
	8.7.1 Definition:
	8.7.2 Language:
	8.7.3 Framework:
	8.7.4 Usage of memory:
	8.7.5 Metaparameters:
	8.7.6 Hardware:
	8.7.7 Software security:
	8.7.8 Conclusion:

	8.8 Maintainability of quality during operation:
	8.8.1 Definition:
	8.8.2 Maintainability of quality during operation:
	8.8.3 Accuracy (KPI) monitoring:
	8.8.4 Model output monitoring:
	8.8.5 Input data monitoring:
	8.8.6 Conclusion:

	Postal Code Analysis
	1 Purpose of the technical report:
	2 Expected outcome:
	3 Author’s role/ perspective of authors:
	4 Problem definition:
	5 Product specification:
	5.1 Data related specification:
	5.2 Model specifications:
	5.3 KPI specifications:

	6 Introduction of the datasets:
	7 Sample of input data:
	8 Quality assurance procedures using AIQM guideline:
	8.1 Sufficiency of requirements analysis:
	8.1.1 Definition:
	8.1.2 Data for all possible classes:
	8.1.3 Selecting well-defined feature dimensions:
	8.1.4 Selecting in-bound and out of bound areas:
	8.1.5 Summary of the problem domain:
	8.1.6 Identifying unsound (never to occur) cases:
	8.1.7 Conclusion:

	8.2 Sufficiency of data design:
	8.2.1 Definition:
	8.2.2 Reason for data design:
	8.2.3 Build a new dataset:
	8.2.4 Work with an existing dataset:
	8.2.5 Procedures of data design:
	8.2.6 Conclusion:

	8.3 Coverage of dataset:
	8.3.1 Definition:
	8.3.2 Determining data coverage:
	8.3.3 Coverage using Surprise Adequacy:
	8.3.4 Identifying rare/corner cases:
	8.3.5 Feature deletion:
	8.3.6 Conclusion:

	8.4 Uniformity of dataset:
	8.3.1 Definition:
	8.3.2 Determining data distribution from visual representation:
	8.3.3 Computing data evenness:
	8.3.4 Reducing biasness of data collection:
	8.3.5 Conclusion:

	8.5 Correctness of machine-learning models:
	8.5.1 Definition:
	8.5.2 Different Accuracy measures/ Key performance indicator (KPI):
	8.5.3 Defining models’ behavior & finding corner cases:
	8.5.4 Conclusion:

	8.6 Stability of machine-learning models:
	8.6.1 Definition:
	8.6.2 Robustness due to perturbation in data:
	8.6.3 Robustness due to perturbation in model:
	8.6.4 Conclusion:

	8.7 Soundness of components:
	8.7.1 Definition:
	8.7.2 Program & open-source libraries:
	8.7.3 Image processing unit:
	8.7.4 Unit for external methods:
	8.7.5 Usage of memory:
	8.7.6 Time cost:
	8.7.7 Software security:
	8.7.8 Difference between training and operational environment:
	8.7.9 Conclusion:

	8.8 Maintainability of quality during operation:
	8.8.1 Definition:
	8.8.2 Task flow during maintenance:
	8.8.2.1 Accuracy (KPI) monitoring:
	8.8.2.2 Continuous data collection and labeling:
	8.8.2.3 Analyzing novelty of model input:
	8.8.2.4 Analyzing re-training necessity:
	8.8.2.5 Model output monitoring:
	8.8.2.6 Creating additional dataset:

	8.8.3 Conclusion:

	

