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Foreword 

 

In the project "Research and Development on the Quality Assessment Reference and Testbed 

of Machine-Learning /Artificial Intelligence Systems" (JPNP20006) commissioned by the New 

Energy and Industrial Technology Development Organization (NEDO), we are developing 

Machine Learning Quality Management (MLQM) Guideline [1] to explain the quality of machine 

learning. While developing the guidelines, we have also been researching and developing 

techniques for evaluating and improving the quality of machine learning. This report presents 

the results of the research and development for the 5 years (FY 2019~2023) to technically 

support the quality evaluation described in the MLQM Guideline. 
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1 Introduction 

Machine Learning Quality Management (MLQM) Guideline has been developed to clearly 

explain the quality of various industrial products including statistical machine learning (4th 

Edition [1]). The fourth edition of the MLQM guideline describes the 14 internal quality 

characteristics (e.g., Stability of the trained model, Reliability of underlying software system, 

etc.) for machine learning systems, but techniques for evaluating and improving these internal 

quality characteristics have not been sufficiently established yet. This report presents the results 

on survey, research, and development of techniques for evaluating and improving the internal 

quality characteristics, which have been conducted for supporting the development of the MLQM 

guideline. 

1.1 Overview of this research and development 

Figure 1.1 shows the relationship between the machine learning quality evaluation and 

improvement techniques (the center yellow boxes in Figure 1.1, where the number in each box 

shows the chapter number explained in this report) that were researched and developed for the 

5 years (FY 2019~2023). The relations to the phases of the machine learning model lifecycle and 

the 14 internal quality characteristics are also shown. Each technique is briefly introduced below, 

and the details are explained in Chapters 2 ~ 9. 

 

 

Figure 1.1 Machine learning quality evaluation and improvement techniques in this report 

 

– Visualization of Machine Learning Models (in Chapter 2): 

To support the quality evaluation work of machine learning models, we attempted to 

visualize the difference and comparison results between multiple models and the 

sensitivity of the workers (annotators and model designers) reflected in each model. 
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We proceeded with the implementation of a tool to visualize the work procedures of 

the workers involved in creating the models and their influence on the models with 

multiple views[2][3]. The main functions visualize the difference between the three 

items used training data, model structure, and optimization algorithm, as well as the 

intention of the adjustment by the operator and his/her impression and evaluation of 

the model. Using this tool, we created visualization results of multiple machine 

learning model adjustment work histories. 

 

– Improved Quality through Better Application of Data Augmentation (in Chapter 3): 

To improve the data-diversity obtained by data augmentation and increase accuracy 

and stability in deep learning, we devised new two data augmentation methods, FC-

mixup [16] and Latent DA, with simple algorithms, and report the results of their 

impact on generalization performance in experiments [4]. In addition, for the Latent 

DA method, we have been developing AdaLASE, for dynamically selecting appropriate 

layers for the data augmentation. For the FC-mixup method in CNN, there are two kinds 

for mixing: FC-channel which mixes at the channel level of CNNs, and FC-pixel which 

mixes at the pixel level. We compare them and their hybrid with the existing method 

Manifold Mixup, and then confirmed that the proposed method demonstrates higher 

accuracy than the existing methods. In addition, for efficiently exploring suitable data 

augmentation policies in early training epochs, we proposed a new metrics based on 

Affinity and Diversity, and then demonstrated the effectiveness of this approach. 

 

– Debug-Testing of DNN Software (in Chapter 4): 

The failures of DNN (Deep Neural Network) models can be considered from two 

viewpoints of causes. One of them is the direct cause during inference (by prediction 

and inference programs) and the other one is the root cause during training (by 

training and learning programs, training models, and training data). We proposed an 

indicator and an analysis method for evaluating the presence of bugs in training 

programs by the internal information (e.g., neuron coverage) of DNN models, and then 

confirmed that the indicator is useful by experiments [5]. 

 

– Debugging and Testing of Training Data (in Chapter 5): 

For the case that failures in DNN (Deep Neural Network) models are caused by training 

data bias, we researched methods for detecting such bias from two quality viewpoints:  

model accuracy and model robustness. Then, we obtained the experiment results that 

the robustness of the DNN models increases without decreasing the correctness by 

retraining the DNN models by removing data such that causes low or high neuron 

coverage from the training dataset. It means that the internal states such as neuron 

coverage is useful for debugging training datasets. Such debag approach is thought to 

be a combination of a statistical view with software engineering methods. 

 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology  
4th English edition  DigiARC-TR-2024-02 / CPSEC-TR-2024002 

3 

 

– Evaluation and Improvement of Robustness (in Chapter 6): 

To evaluate and improve robustness of machine learned models, we report on the 

results of a survey on methods to measure the maximum safe radius (the maximum 

value of noise that can be guaranteed not to cause misclassifications) as a measure of 

robustness for input noise including adversarial examples, and methods to increase the 

safe radius. 

 

– Estimation of Generalization Error Bounds (in Chapter 7): 

To evaluate the stability of trained models described in the MLQM Guideline, we 

focused on randomly/worst weight-perturbed generalization error bounds of neural 

classifiers and demonstrated that they are useful for evaluating the stability by 

experiments. Here, the weight-perturbed generalization error of a classifier represents 

the expected value of the misclassification-rate for any input including unseen input 

when perturbations are added to weights (i.e., training parameters) in the classifier, 

and random perturbations are randomly selected from uniform distribution with 

specified range, while worst perturbations are selected towards misclassification 

within the range. 

 

– Adversarial Example Detection (in Chapter 8): 

To establish a practical method for detecting adversarial examples, we report on the 

results of a survey on the state-of-the-art adversarial example detection methods and 

classifies them into four main categories, and then present the results of follow-up 

experiments on representative methods. Consequently, we confirmed that NIC method 

shows the highest detection rate. Then, we constructed the NIC framework for 

detecting adversarial examples based on the NIC method and evaluated it by the 

Kullback-Leibler divergence for explaining the reason why the NIC method is effective. 

 

– AI Quality Management in Operation (in Chapter 9): 

To maintain quality of machine learning models even for unseen data and/or changing 

trends during operation, we report on the results of a survey on detection and 

adaptation methods for changes in input-data distribution over time (e.g., concept 

drift), and also a survey on the latest unsupervised domain adaptation methods (e.g., 

label-shift). The surveys include not only supervised methods but also unsupervised/ 

semi-supervised methods that are promising approaches from the viewpoints of 

operational costs and practical adaptability. 

 

  



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology  
4th English edition  DigiARC-TR-2024-02 / CPSEC-TR-2024002 

4 

 

1.2 Author list 

The authors of each chapter are as follows: 

– Chapter 1: Yoshinao Isobe (AIST CPSEC) 

– Chapter 2: Yuri Miyagi (AIST AIRC) 

– Chapter 3: Tomoumi Takase (AIST AIRC) 

– Chapter 4: Shin Nakajima (NII) 

– Chapter 5: Shin Nakajima (NII) 

– Chapter 6: Yoshinao Isobe (AIST CPSEC) 

– Chapter 7: Yoshinao Isobe (AIST CPSEC) 

– Chapter 8: Yusei Nakashima and Keiichi Nishida (Techmatrix) 

– Chapter 9: Yoshihiro Okawa and Kenichi Kobayashi (Fujitsu) 

1.3 Acknowledgements 

This report is based on results obtained from the project "Research and Development on the 

Quality Assessment Reference and Testbed of Machine-Learning /Artificial Intelligence Systems" 

(JPNP20006), commissioned by the New Energy and Industrial Technology Development 

Organization (NEDO). 

 

  



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology  
4th English edition  DigiARC-TR-2024-02 / CPSEC-TR-2024002 

5 

 

2 Visualization of Machine Learning Models 

Information visualization is becoming a popular method to support the analysis of the 

structure and behavior of machine learning models, which are known as black boxes. We have 

started research on a new method for visualizing machine learning models with the following 

two objectives: 

– Visualization of differences and comparison results between multiple models 

➢ Implementation of visualization based on expressions that are easy for humans to 

interpret and understand 

– Visualization of the sensitivity of workers (annotators of training data, designers of 

model structures) reflected in the model 

➢ Proposal of new factors that can be used for quality assessment 

In this chapter, we first describe the results of a survey of recent machine learning model 

visualization techniques. Then, we introduce the results of a prototype visualization tool for 

observing model and worker information, developed in 2020-2023, and our future 

implementation policy. 

2.1 Survey on methods to support using machine learning 

The basic purpose of visualization methods for machine learning is to improve the 

interpretability of models, and this is closely related to XAI (Explainable AI), which has attracted 

attention in recent years. There are no definitive definitions or evaluation methods for XAI, 

however, many papers about the classification of XAI are published, and we can devise 

visualization objectives and methods along these lines. In [6], the approaches to increase 

interpretability are classified into four categories: 

(1) Total explanation (Approximation of a complex model structure by a simple model) 

(2) Partial explanation (Explaining the rationale for decisions about model output results) 

(3) Design of explainable models (Creation of readable models at the design stage) 

(4) Explanation of the deep learning model (e.g., Highlighting the parts of the image data 

that the model recognizes) 

Especially (2) and (4) have much room for contribution by visualization. These machine learning 

visualization methods are continuously being studied, and the number of survey papers is 

increasing due to the diversity of applications and target cases. For example, Hohman et al. [7] 

described and classified deep learning visualization methods according to the 5W1H elements. 

It also presents several overall directions and issues in the field of deep learning visualization. 

Especially "improving interactions for model evaluation" and "improving interpretability 

through active human involvement in models” are closely related to our research, which aims to 

develop visualization methods for quality evaluation.  
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As research on machine learning visualization progresses and becomes popular in the real 

world, there is a growing tendency for complex analysis to be performed in a single visualization 

view. In the past, visualization methods basically focused on detailed analyses of single models 

specialized in either data ([8]) or model structure ([9]). However, in recent years, research has 

been conducted on combined visualization methods for data and model structure, as well as 

methods that aim to compare multiple models. The number of elements that make up a machine 

learning model is enormous, and it takes a lot of time and effort to create visualization results 

for the number of models and compare them side by side. Besides, the differences in structure 

and accuracy between the models to be compared are often small and features of the models 

may be overlooked. Therefore, there is a high need for a visualization method that uses 

expressions that emphasize the differences so that the differences can be found efficiently within 

a limited screen. (For example, in [10], the pipeline from data input to output, hyperparameter 

values, etc. for more than 10 models can be compared on a single screen.) 

So far, we have introduced trends and examples of visualization methods regarding the 

properties and accuracy of the models themselves. In parallel with this, we also investigated how 

the workers (annotators, designers, and end users) involved in the creation and evaluation of 

the model interact with the models. In fields such as image recognition, models with accuracy 

beyond human recognition capabilities have been developed, but there is a persistent suggestion, 

regardless of the field, that active human intervention is desirable to improve the accuracy of 

models. There are many papers that discuss the following items regarding the relationship 

between AI and humans and effective intervention methods in the modeling process: 

– Introduction of operations (adjustment and evaluation) to improve the accuracy of the 

model in the learning process 

– Designing an interface that is easy to use and can maintain the motivation of the 

operator 

– Collaboration with related fields such as cognitive science and psychology 

As an example, Amershi et al. examined the psychological state of workers who were 

assigned feedback to evaluate and improve several models [11]. The authors found that the 

workers preferred to be able to directly tell the correct processing steps to models. They also 

said that workers get more motivated to give more active feedback when they find their actions 

are improving the accuracy of the model. Although there seem to be few examples of 

visualization of such information about the workers themselves and the impact of each worker 

on the model, it can be adopted as a ground for quality assurance as follows: 

– Show that their knowledge is sufficiently reflected in the model's behavior when 

domain or machine learning experts participated in the creation of the model. 

– Indicate which workers' behavior is strongly reflected in the model and use this as a 

clue to identify elements (training data, parameters, etc.) that should be adjusted. 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology  
4th English edition  DigiARC-TR-2024-02 / CPSEC-TR-2024002 

7 

 

2.2 Visualization of model structure and worker information 

Based on the above research results, we place particular importance on "comparative 

visualization of multiple models" and "visualization of worker's sensitivity" among machine 

learning model visualization methods. We proceeded to design a visualization tool with both 

properties. Figure 2.1 shows an overview of the proposed method. In this study, workers are 

classified into three types: annotators, model designers, and end users, with a particular focus 

on model designers. 

 

 

Figure 2.1 Overview of machine learning models and worker information visualization methods 

 Logging of differences between models 

The first step is collecting logs of the structure of the model to be visualized, the process of 

adjusting the model, and the test results. The current implementation assumes image 

classification or regression analysis cases. The user extracts from the records by Comet.ml, a 

machine learning experiment management tool, or from articles submitted to machine learning 

competitions (codes and results used, and their explanations), the process of parameter 

adjustment by the model designer, and the results of tests. They get saved as text files. For the 

annotators, we do not directly collect work logs, but indirectly evaluate their work based on how 

the model designers selected data and applied preprocessing. 

From these logs, we calculate differences between models (the amount of change from the 

model used immediately before). Differences between models are classified into three 

categories: training data, model structure, and optimization algorithm, and are calculated for 

each. The difference in training data is calculated by adding up the data used, the number of 

classes, and the difference in parameters used for preprocessing. The difference in model 

structure is obtained by creating pairs of layers that comprise the two models and summing the 

dissimilarities (differences in layer types and parameters) of each pair (Figure 2.2). For the 

difference in optimization algorithms, a constant is assigned if the algorithm types are different. 
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If they are the same, the difference is calculated from the difference in parameters. After 

obtaining the three types of differences, we obtain the overall change in the model by summing 

these values. In addition, the difference calculation for each category is obtained by adding the 

difference value calculated from basic information such as the number of training data and the 

number of layers in the model to the difference value calculated from factors unique to each case 

(e.g., processing related to data expansion in the case of image classification). Although this 

method makes it difficult to directly compare difference values in different cases because the 

formula for calculating differences changes from case to case, it does allow for comparison of the 

development process of a particular model within the same case, and of models created by 

multiple workers. 

 

Figure 2.2 Model structure difference calculation flow 

 Visualization of model structure and worker information 

We use the collected logs to visualize the structure of the model and information about the 

workers. The main users of this tool are assumed to be model designers. Considering the 

possibility that users unfamiliar with visualization may be included, we proceeded with the 

implementation by combining basic visualization methods (line graphs, bar graphs, etc.) and 

actively linking them (highlighting related parts, etc.). In FY2020, we implemented views on 

basic information such as model structure and output results, and in FY2021-23, created to 

visualize the progress of model adjustments and testing by workers. Figure 2.3 shows the 

overview of prototype visualization views, which visualize the results of MNIST for two simple 

models developed in FY2020. 
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Figure 2.3 Visualization views on model structure and output results 

 

We created the tool on JupyterLab, mainly using the machine learning library PyTorch and 

the visualization library Bokeh, so that we could compare the features of the two models: 

(1) Network of each model structure 

(2) Bar graph of output results for each class 

(a) Visualization for each model 

(b) Visualization of the difference between two models 

(3) Scatter plot of output result correlation between two selected classes for each model 

(4) Line graph of accuracy 

(5) Thumbnail list of data classified with particularly high (low) confidence 

Figure 2.4 shows an example of the results of classifying the output to MNIST for two models. 

The horizontal axis represents the class from 0 to 9, and the vertical axis represents the amount 

of data. The color-coding of each bar represents the combination of correct (T) and incorrect (F) 

answers for the two models, for example, where TF (FT) means that only model 1 (2) correctly 

classified. Immediately after the start of learning (Figure 2.4, left), model 1 had a high percentage 

of correct answers in classes 0, 1, and 7, and model 2 had a high percentage of correct answers 

in classes 2, 6, and 8, indicating that each model had different strengths. At the advanced stage 

of learning (Figure 2.4, right), both models had high percentages of correct answers in many 

classes. Besides, model 1 has a high percentage of correct answers, including classes 3, 4, 5, and 

7, which model 2 is not good at, indicating that model 1 is more advanced in learning than model 

2 at this stage. 
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Figure 2.4 Examples of comparing the output results of two models 

 

 

Figure 2.5 Overall view of the model adjustment work history visualization  

 

Figure 2.5 shows the structure of the time-series visualization view of the model adjustment 

work history implemented from FY2021 to FY2023. The logs about the model structure and test 

results are used as input for visualization by network graphs. 

The graph is arranged with the vertical axis as the evaluation index of the model and the 

horizontal axis as the time axis. The graph is composed of alternating nodes of different types 

and shapes as shown in Figure 2.6, which are defined as "model nodes" and "intention nodes". 

The model nodes represent the adjustments and test results for one of the models used. The 

interior of the model node is divided into three colored rings. The color of the ring represents 

the difference from one of the previously used models, which from the outside means the 

difference in training data (orange), the difference in model structure (purple), and the 

difference in optimization algorithm (green). Higher saturation indicates a larger difference 

value from the compared model, and the correspondence between color and difference value 

can be checked with the color bar placed at the right end of the view. Usually, model nodes are 
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placed at equal intervals along the horizontal axis to indicate the order in which the models were 

used. However, in cases where multiple settings were prepared for a particular parameter and 

comparative experiments were conducted simultaneously, multiple models used in parallel can 

be grouped and placed in close proximity. In this case, the past models to be used in the 

difference calculation are selected as shown in Figure 2.7. In this example, one model is used in 

Stage 1, three models are set up in Stage 2, and two models are created and used in parallel in 

Stage 3. If multiple models are not used in parallel in the previous phase, as in phase 1 to phase 

2, they are compared to the models in the immediately preceding phase (blue arrows). When 

multiple models are candidates for comparison, as in steps 2 through 3, priority is given to 

comparisons with models with similar structures (red arrows) or with models that were more 

accurate (green arrows). These settings allow for observation of "the process of development of 

a model of a particular structure through detailed parameter adjustments" and for comparison 

and evaluation by focusing on models with parameter settings that are likely to be employed 

continuously with good accuracy. 

 

Figure 2.6 Composition of the graph of model adjustment work history 

 

 

Figure 2.7 Image of selection of model nodes to be compared 
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The intention node is placed between the two model nodes and is assigned two different 

colors: inner and outer. The inner color represents the intention or policy of the worker in 

creating the model immediately following that intention node. Information on intentions and 

policies can be selected from a list of pre-defined options during the logging phase, and the color 

of the node changes accordingly (Figure 2.6). The outer part of the intention node, on the other 

hand, visualizes the worker's impression and evaluation of the immediate model. The frame gets 

colored red (blue) when "the accuracy of the created model has fallen (risen) below the expected 

level" by adding a note to the log. This means the tool can highlight areas of unexpected results 

to indicate points where work policies should be analyzed and modified. 

These nodes are connected by three types of edges (solid, thick dotted, and thin dotted lines) 

to indicate the order in which the model was used and the flow of development (Figure 2.8). 

Solid edges connecting multiple model nodes mean that they are a group of models tested in 

parallel. The thick dotted line corresponds to the timing when the parallel experiment was 

completed, meaning that the next model was used after checking the results of the previous 

model and applying changes to the settings. Therefore, the intention node is placed in the middle 

of the thick dotted edge. Thin dotted edges represent model derivation relationships, such as 

when subsequent models take over parameter settings. This does not necessarily connect 

models that have been used in succession, but it does confirm the long-term developmental 

relationships when models of a particular structure are fine-tuned and used. 

 

Figure 2.8 Edge types and display examples 

 

Using these functions, we created visualization results for the work history data of the three 

cases. 

(1) Model tuning history during user testing in the study of machine learning model 

visualization tools 

(2) Model tuning history for one participant in the Kaggle competition Digit Recognizer 

(3) Model tuning history for 6 participants in the Kaggle competition Prediction of Wild 

Blueberry Yield 

Using the data in (1), we visualized the accuracy and the amount of change in model structure 

when multiple ResNet models trained on CIFAR-100 were tested in sequence (Figure 2.9). 
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Figure 2.9 An example of visualization of a worker's model adjustment history 

 

Table 2.1 Parameters of the model used for work history visualization 

 

 

Referring to the hyperparameter tuning scenario conducted in [12], the model was trained 

and tested 6 times and logged while changing the parameters as shown in Table 2.1. 𝑙 is the 

learning rate, 𝑚 is the momentum value. 𝑝 and 𝑎 are the erasing probability and max erasing 

area when random erasing was applied to the training data. 𝑑 is the depth of the ResNet model 

used. Note that in this case, all the intent nodes are grayed out because no information on the 

intent nodes was entered. The numbers in Figure 2.9 correspond to the Indexes in Table 2.1. In 

2 and 5, the outermost rings in the model node that represent changes in the training data are 

highlighted in red. In going from model 1 to 2 and from 4 to 5, this reflects a significant change 

in 𝑝 and 𝑎, the parameters related to the training data. Similarly, in 3, 4, and 5, the nodes are 

highlighted in green, indicating changes related to the optimization algorithm. Specifically, this 

reflects changes in 𝑙 and 𝑚. In addition, only in 6, the node is colored purple, indicating that a 

change in the model structure difference has occurred. 

Next, we present an example of visualization for the participation records of the machine 

learning competition in (2): We selected one article of the code and its explanation of the 

parameter comparison experiment submitted to Digit Recognizer, one of the competitions held 

for beginners at Kaggle, and information on parameter settings and obtained accuracy was 

entered into the visualization tool. The experiment was divided into five stages as shown in 

Figure 2.10. Except for the fifth step, the process is iterative, focusing on a particular element 

(parameter or model structure) to find the optimal setting, and then taking over the setting to 
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verify the next element. Figure 2.11 shows the visualization results. Since the adjustments 

mainly change the model structure and the Dropout rate, dark purple and green colors can be 

seen in the colors of some model nodes. The change in the color of the intent node indicates that 

the first half of the node is green, indicating that the parameters are being adjusted while 

considering the constraints of the computational resources, and the second half, which is purple, 

indicates that the setting that improves accuracy is being obtained in priority. If we look at the 

thin dotted edges that represent the derivation relationship of the models, we can see that the 

model that is the derivation source (the model node at the left end of the thin dotted edge) is not 

necessarily the one that achieved the optimal accuracy among the models experimented in 

parallel (the model nodes connected with solid lines). As with the intent node, this reflects the 

fact that, in consideration of the cost of computational resources, priority was given to selecting 

"a setting that achieves some high accuracy but does not make the cost too large".  

 

Figure 2.10 Parameterization of the adjustment process for models submitted to Digit Recognizer  

 

 

Figure 2.11 Visualization results of the adjustment process of models submitted to Digit Recognizer 
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Figure 2.12 Example visualization of Prediction of Wild Blueberry Yield participant's work record  

(for 6 participants) 

 

Figure 2.13 Example visualization of Prediction of Wild Blueberry Yield participant's work record  

(individual) 

 

The data in (3) are work records for six participants in Kaggle's competition Prediction of 

Wild Blueberry Yield, and Figure 2.12 and Figure 2.13 show the visualization results. In this case, 

unlike (1) and (2), MAE is used as the evaluation index of the model, so smaller values on the 

vertical axis indicate better results. Figure 2.12 depicts the records of six people together, while 

Figure 2.13 depicts the records of one person at a time. Differences can be seen in the overall 

shape of the graphs created and in the number of nodes, indicating that the flow of MAE changes 

and the number of times the test was performed differed greatly from worker to worker. On the 

other hand, there are large differences in the length of the work history, and in Figure 2.12, as a 
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result of aligning the beginning of the work history and arranging the nodes in order from the 

left, there are too many nodes concentrated at the extreme left end of the screen, making it 

difficult to compare the latter part of the work history. In addition, because the amount of change 

in some models is extremely large, only the corresponding model nodes are colored darkly, and 

the color of the nodes of other relatively little-changed models does not change much, making it 

difficult to observe detailed difference values. 

2.3 Future work 

In future work, we would like to expand the visualization function with the following policy. 

First, we will introduce more detailed difference value calculations for the data used in this study 

to enable comparison of various items. Then we would like to compare the work patterns of a 

large number of workers and visualize the similarity between models or workers, and the 

classification results in an overhead view. By observing these visualization results, we would like 

to be able to estimate the skill level of workers and classify the characteristics of work (work 

patterns). Furthermore, we aim to present the results of the recommendation of model 

improvement measures along with the calculation results of the difference values and the 

contents of the visualization results. 

Although this method currently assumes manual model design, it would be useful to extend 

it to a wider range of cases by combining it with NAS (Neural architecture search) and other 

methods. 

In order to evaluate this method, we would also like to conduct user tests on the functionality 

of the visualization in the form of observing the generated visualization result images and the 

visualized contents. 
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3 Improved Quality through Better Application of Data Augmentation 

This chapter describes the results of developing a new method for applying data 

augmentation in neural network learning and evaluating its effect to learning quality through 

experiments. 

3.1 Research purpose 

Data augmentation is a technique to increase the number of samples by adding deformations 

to the data, and it is highly effective in deep learning, which has a tendency of performance 

degradation when the number of training samples is small. On the other hand, the effectiveness 

of data augmentation strongly depends on the data used, so the selection of data augmentation 

methods and the parameters of each method must be set appropriately. However, theoretical 

analysis of data augmentation is difficult, and general ways to use it have not yet been 

established. This leads to unintentional and inappropriate use, which in turn compromises the 

quality of learning. In fact, there are many cases that training performance is degraded by setting 

inappropriate values for the amount of deformation of each data augmentation method, such as 

mask size or rotation angle, or where the user is puzzled as to what data augmentation method 

to select for the actual data to be used.  

Therefore, to move away from the empirical use of data augmentation, this study focused on 

data diversity. Increasing diversity is the essential goal of data augmentation, and it has been 

demonstrated in the work of [13] that increasing diversity has a significant impact on improving 

generalization performance. Recently, a technique called RandAugment [14], which dynamically 

applies randomly selected operations from multiple data augmentation operations during 

training, has attracted much attention, but while it greatly improves diversity, effectively using it 

is not easy because many parameters need to be adjusted. In this study, we proposed the 

following two new methods for applying data augmentation related to data diversity, and 

improved the algorithms and evaluated their performance. 

– We apply data augmentation at various layers of the neural network, including hidden 

layers, and perform automatic optimization of the applied layer (Section 3.2). 

– We improve the Mixup method [15], a promising data augmentation method, and 

propose a new way to mix samples (Section 3.3). 

Another practical problem in using data augmentation is the computational cost. There are 

many types of data augmentation methods, and each method has its own hyperparameters, such 

as rotation angle, as mentioned above. In order to select the appropriate data augmentation, 

training must be performed many times, which requires high computational cost. Therefore, we 

proposed the following method to efficiently find appropriate data augmentation. 

– A new data augmentation metric that takes into account Affinity and Diversity is used 

to successfully explore data augmentation policies in a short number of training steps 
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(Section 3.4). 

3.2 Improved application layer for data augmentation 

 Data augmentation at hidden layers 

Generally, data augmentation is considered to be applied to input data, but in neural 

networks, it is also possible to apply data augmentation to hidden layers. There are several 

previous studies on this subject, but most of them are not versatile methods, such as Manifold 

mixup [17], which limits the method to mixup [15], or other methods that require specific 

networks and datasets. In this study, we considered applying various data augmentation 

methods used for image data, such as affine transformation and mask processing, in the hidden 

layers. Since features are extracted hierarchically in CNNs, data augmentation can be applied in 

various layers randomly selected for each minibatch to generate a wide variety of samples. As 

with application to input images, data augmentation can be applied to the feature maps obtained 

at the intermediate layers, making implementation easy. 

An example of actual application of mask processing and translation to an input image and 

feature map is shown in Figure 3.1. Here, a sample is input to the model in training, and the 

images are shown in the upper row, aligned in size, immediately after data augmentation was 

applied at different layers with the same parameters (mask position and translation amount). 

The feature maps in the final layer of the sample are shown in the lower row. They are different 

images depending on the layer where the data augmentation was applied. This result shows that 

data augmentation at various layers leads to an increase in the diversity of the generated data 

and results in learning different from when data augmentation is applied only to the input data. 

 

 
 

Figure 3.1 Example of applying data augmentation to input images and feature maps obtained at 

hidden layers 

 

To compare the performance of data augmentations in the input layer and that in feature 

maps, we used various data augmentations and obtained test accuracies for models trained with 

supervision. Here, WideResNet28-10 was trained for 200 epochs using the CIFAR-10, Fashion-

MNIST, and SVHN (without extra data) datasets. The results are shown in Figure 3.2. In each 

figure, the horizontal axis represents the accuracy [%] of the conventional method (Input DA) 
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and the vertical axis represents the accuracy of the proposed method (Latent DA). As can be seen 

from these results, the proposed method tends to show higher accuracy than the conventional 

method, and the proposed method presented higher accuracy even in cases where the 

conventional method presented lower accuracy, such as the results using Crop. These results 

indicate that the diverse samples generated by the application of data augmentation to random 

layers are effective in improving performance. 

 

 
Figure 3.2 Comparison of test accuracy between input DA and latent DA 

 Selecting appropriate layers for data augmentation 

Although previous studies have shown that data augmentation at hidden layers is effective, 

the question arises as to which layer is optimal for data augmentation. Although it is possible to 

find the optimal layer by repeatedly training with different layers of data augmentation and 

comparing the values of validation accuracy, it is an inefficient and impractical method because 

it increases the overall training time. Therefore, in this study, we worked on developing a method 

to dynamically discover the optimal layer for data augmentation in a single training session. 

The approach is to prepare a parameter called the acceptance ratio for each layer, update the 

acceptance ratio during training, and apply data augmentation in the layer selected 

probabilistically according to the acceptance ratio. The updating of the acceptance ratio is done 

using the gradient descent method as shown below. 

𝑞𝑙 ← 𝑞𝑙 − 𝜂
𝜕𝐿𝑣𝑎𝑙

𝜕𝑞𝑙
, 

where 𝑞𝑙  is the acceptance ratio of layer 𝑙, 𝐿𝑣𝑎𝑙  is the value of the error when the validation 

data is input, and 𝜂 is the step width of the update. In practice, the values of the validation data 

should not be included in the algorithm, so the update is performed by creating pseudo-

validation data with the training data with data augmentation. In the initial state of training, all 

acceptance ratios are set to equal values so that the sum is 1, and the acceptance ratio is updated 

for each minibatch. This optimization is expected to improve the generalization performance by 

increasing the acceptance ratio of layers suitable for data augmentation and decreasing the 
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acceptance ratio of layers unsuitable for data augmentation. 

We named this method Adaptive Layer Selection (AdaLASE) and compared its test accuracy 

to that of conventional methods. The data was CIFAR-10 and MNIST, the model was ResNet18 

and a multilayer perceptron (MLP) with one intermediate layer, data augmentation on input, 

data augmentation on random layers, and AdaLASE. Cutout and Mixup were used as 

augmentation methods. In the results in Figure 3.3, the mean and standard deviation of the 

accuracy for five different initial values are shown for each method. These results show that 

AdaLASE can perform as well as or better than conventional methods. Future plans include a 

detailed analysis of how layers are selected and whether AdaLASE is functioning properly by 

looking at the change in acceptance ratio during training. 

 

 

Figure 3.3 Comparison of test accuracy between AdaLASE and conventional methods 

3.3 Proposal for a new mixing method by improving Mixup 

 Feature Combination Mxup 

In actual training, data augmentation often involves the simultaneous use of multiple 

methods, such as cropping, rotating, and flipping. Therefore, we focus on the compatibility 

between methods when multiple methods are used in this way, and in particular, we consider 

discussing the compatibility from the viewpoint of data diversity. As a first step in this approach, 

we propose a new method that is a variant of an existing method and use it simultaneously with 

the original method to increase the diversity of the data generated and improve performance. 

The method for formulating the diversity is described in the work of [13]. In this study, we first 

compare only the accuracy and verify whether the proposed method improves the performance. 

Here, we have improved Mixup [15], one of the data augmentation methods. This method 

generates a new sample by linear interpolation of two samples, and takes the same ratio of linear 

interpolation for each of the input values and labels, as shown in the following equation. 
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{
𝑥̃ = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗

𝑦̃ = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 
, 

where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) represent the input values for the 𝑖-th and 𝑗-th samples, and 𝜆 is 

the mixing ratio sampled from the beta distribution. Mixup was chosen as the subject of this 

study because of its versatility and because it can be used for many numerical data, including 

not only images but also time series data, and therefore, the impact of improving the Mixup 

method would be significant. 

An improved version of mixup so that it can also be performed in a hidden layer of a neural 

network is called manifold mixup [17], but both mixups generate samples only in a localized 

region of the data distribution, on a line segment between two points, and are inappropriate for 

data sets with distributions in which the properties of the points on that line segment vary 

nonlinearly. 

The Feature Combination Mixup (FC-mixup) proposed in this study [16] is a method of 

mixing samples in a different way than conventional mixups, and is outlined in Figure 3.4. 

Suppose that two samples A and B in the same minibatch output the features 𝑍A and 𝑍B in a 

randomly selected layer. 𝑑  is the total number of features in that layer, FC-mixup randomly 

extracts and combines 𝑑𝜆  features from 𝑍A  and 𝑑(1 − 𝜆)  from 𝑍B  and generates a new 

sample 𝑍X. Since the number of possible combinations is large for a single value of 𝜆, different 

data can be generated depending on the random number, and thus samples can be generated 

over a wide range of the data distribution. FC-mixup is expressed as follows, so 𝑍A and 𝑍B are 

mixed so that this equation is satisfied. 

|𝑍A ∩ 𝑍X| = d𝜆 

 

Figure 3.4 Overview of FC-mixup 

 

This technique of generating new data by combining the parts of two data sets is also found 

in Puzzle Mix [18], but the target is limited to the input image. A similar technique is used in 

Adversarial mixup resynthesis [19], but it is limited to use in autoencoders, while FC-mixup is 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology  
4th English edition  DigiARC-TR-2024-02 / CPSEC-TR-2024002 

22 

 

designed for more general use.  

In our experiments, we used several multi-class classification datasets to compare the 

classification accuracy of the test data between the conventional method (no data augmentation, 

mixup at the input layer [15], Manifold Mixup [17]) and the proposed method (FC-mixup, Hybrid 

method). MNIST, CIFAR-10, CIFAR-100, and SVHN were used for the data. Models used were a 

multilayer perceptron (MLP) with one intermediate layer, a small convolutional neural network 

(CNN) and ResNet18. In addition to the full-size data, experiments were conducted on reduced 

data with 1,000 randomly selected samples. Means and standard deviations in five trials with 

different initial values were obtained and compared. 

Table 3.1 shows the results, with boldface letters representing the highest accuracy. The 

results show that the proposed method FC-mixup (channel-wise) produces the highest accuracy 

in many cases; it outperforms existing methods such as Manifold mixup and CutMix [20], and 

the results demonstrate the high performance of FC-mixup. Since it is a versatile data 

augmentation, the use of FC-mixup in addition to Manifold mixup is considered to be practically 

useful. 

Table 3.1 Comparison of test accuracy on multi-class classification data 

 

 Feature Combination Mxup 

The FC-mixup proposed in Section 3.3.1 was that samples can be mixed per unit for MLP and 

per channel for CNN. However, for CNNs, it is also possible to mix samples per pixel. Channel-

wised FC-mixup is called FC-channel, and pixel-wised FC-mixup is called FC-pixel. Figure 3.5 

shows the difference between them. In FC-channel, each sample channel is combined to make a 

new sample channel, whereas in FC-pixel, each sample pixel is combined to make a new sample 

pixel. The selection of pixels to be mixed in FC-pixel is the same for all channels. 

The results of visualizing the samples generated by Manifold mixup and the two FC-mixups 

are shown in Figure 3.6. It shows the feature maps generated by mixing the two samples at some 

intermediate layer, and although each sample has multiple channels, three of them are taken up 

and shown. From these results, it can be seen that the feature maps generated by the Manifold 

mixup and the two FC-mixups are very different. When Manifold mixup is used, an image is 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology  
4th English edition  DigiARC-TR-2024-02 / CPSEC-TR-2024002 

23 

 

generated by superimposing the two samples. When FC-channel is used, it can be seen that for 

each channel, a feature map from one of the original two samples is employed. In this example, 

the feature maps of Sample 2 for ch1, Sample 2 for ch2, and Sample 1 for ch3 were used to 

generate a new image. When FC-pixel is used, the image of each channel appears to be 

significantly deformed because a new feature map is generated by adopting pixels from either 

sample. 

 

Figure 3.5 Two types of FC-mixups in CNN 

 

 

Figure 3.6 Visualization of feature maps generated by each mixup 

 Hybrid Use of Mixup 

To increase the diversity of the generated data, we consider the Hybrid method, which 

combines FC-mixup and Manifold mixup [17]. Here, two hybrid methods are possible, as shown 

in Figure 3.7. Hybrid 1 is a method in which Manifold mixup and FC-mixup are applied separately 

!"#$%&'(
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to the same two samples, the images obtained are multiplied by 0.5, and then added together. 

The Hybrid 2 method first applies FC-mixup to generate images, and then mixes two of the 

generated images by using Manifold mixup. 

FC-channel and FC-mixup by themselves and in two different Hybrid methods were 

compared with the highest accuracy of the existing methods. The results in Table 3.2 show that 

the proposed method has higher accuracy than the existing methods; the Hybrid method did not 

always have the highest accuracy, and which FC-mixup was optimal depended on the dataset, 

model, and other conditions. 

 

Figure 3.7 Proposal of two Hybrid methods 

 

Table 3.2 Comparison of test accuracy between multiple FC-mixup methods and existing methods 
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3.4 Efficient data augmentation policy search using Affinity and Diversity 

 Affinity, Diversity 

There are numerous methods for data augmentation, and each method has its own 

hyperparameters. Therefore, determining an appropriate augmentation policy requires a lot of 

training, which is computationally expensive. In this study, we have developed a new method to 

reduce the computational cost of augmentation policy search. 

In general, the search for appropriate augmentation policies is performed using validation 

accuracy, but in this study, we focused on Affinity and Diversity, indicators proposed for data 

augmentation [13]. As shown in Figure 3.8, Affinity represents the degree of overlap between 

the original and extended data distributions and is calculated by the following equation: 

𝐴𝑓𝑓 ≔  𝐴(𝑚, 𝐷𝑣𝑎𝑙
′ ) / 𝐴(𝑚, 𝐷𝑣𝑎𝑙) 

where 𝐴(𝑚, 𝐷𝑣𝑎𝑙
′ ) represents the accuracy of validation data with data augmentation in a model 

trained with clean data, and 𝐴(𝑚, 𝐷𝑣𝑎𝑙 ) represents the accuracy of clean validation data in the 

same model. Diversity represents the spread of the data distribution after the augmentation and 

is calculated by the following equation: 

𝐷𝑖𝑣 ≔  𝐸𝐷𝑡𝑟𝑎𝑖𝑛
′ [𝐿𝑡𝑟𝑎𝑖𝑛] / 𝐸𝐷𝑡𝑟𝑎𝑖𝑛

[𝐿𝑡𝑟𝑎𝑖𝑛] 

where 𝐸𝐷𝑡𝑟𝑎𝑖𝑛
′ [𝐿𝑡𝑟𝑎𝑖𝑛]  represents the value of the error function of the model trained using 

training data with data augmentation, and 𝐸𝐷𝑡𝑟𝑎𝑖𝑛
[𝐿𝑡𝑟𝑎𝑖𝑛]  represents the value of the error 

function of the model trained using clean training data. 

 

 

(a) Difference in distribution according              (b) Relationship to test accuracy 

to the size of the metric  

Figure 3.8 Characteristics of affinity and diversity 

 

It is known that test accuracy is higher when training with a data augmentation policy that 
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increases both Affinity and Diversity values, as shown in the distribution framed in red in Figure 

3.8(a). This can be confirmed in the results shown in Figure 3.8(b). In this figure, each point 

shows the results of trainings using data augmentation with different methods and 

hyperparameters. The higher accuracy in the upper right portion of the figure can be seen, 

indicating that both affinity and diversity are important. 

 Shortening the search phase with a metric considering Affinity and Diversity 

To reduce the computational cost of searching for data augmentation policies, this study 

proposes shortening the search phase, i.e., reducing the number of training steps for search. This 

can easily reduce the computational cost, but when using validation accuracy, the problem arises 

that the test accuracy cannot be well estimated with a short number of training steps. Therefore, 

we propose a metric 𝑎𝑓𝑓 × 𝑑𝑖𝑣𝛼 × 𝑣𝑎𝑙 that takes into account affinity and diversity. This is a 

metric that becomes large when affinity, diversity, and validation accuracy all take large values. 

Since diversity is an unstable metric in the early stages of training, as described below, 𝛼, which 

takes values between 0 and 1, is used to reduce the influence of diversity. 

The training method using this proposed metric is shown in Figure 3.9. With the 

conventional method, the search phase is carried out to the final step, and the test accuracy is 

estimated using the validation accuracy. On the other hand, in this method, after a short search 

phase, the proposed metric is evaluated by calculating affinity, diversity, and validation accuracy, 

and the data augmentation policy with the largest value is selected. That augmentation policy is 

used for training until the final step. This approach reduces the overall computational cost by 

shortening the search phase, in which multiple data augmentations are used to learn individually. 

For example, if the overall learning is 200 epochs and the search phase in this method is 5 epochs, 

roughly speaking, the computational cost could be reduced by a factor of 0.025. 

 

 

Figure 3.9 Summary of the proposed method 

 

Experiments were conducted to test the effectiveness of the proposed method using multiple 

datasets. The model used was ResNet50 for ImageNet and ResNet18 for other datasets. Nine 

data augmentation methods, PatchGaussian [21], FlipLR, FlipUD, Crop, Cutout, Crop+FlipLR+ 
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Cutout, Rotate, ShearX, and ShearY, each with multiple hyperparameters, were used, with a total 

number of 100 data augmentations for ImageNet and 216 for the other datasets. After a search 

phase of 5 epochs, a data augmentation policy is selected using different metrics. The data 

augmentation was applied to the training until the final epoch (100 epochs for ImageNet and 

200 epochs for the other datasets) and the test accuracies were compared. The experimental 

results are shown in Table 3.3. The results show that the proposed metric (Proposed) is able to 

select an augmentation policy that yields higher test accuracy compared to the case where only 

validation accuracy is used (Val acc). Ground truth is the most accurate result among all the data 

augmentations trained until the last epoch. By taking affinity and diversity into account, the 

proposed method was able to estimate the test accuracy with good accuracy even in a short 

search phase. 

 

Table 3.3 Comparison of test accuracy of trainings with selected augmentation policies  

for each metric 

 

 

The correlations between epoch 5 and epoch 200 for each metric using CIFAR-10 are shown 

in Figure 3.10. Each point represents the result of training with different data augmentations. 

These results show that Affinity is highly positively correlated. This is thought to be because the 

calculation of affinity requires a model trained with clean data, so that in the early stages of 

training, the model is not unstable, with large changes in accuracy due to data augmentation. 

Conversely, the calculation of diversity requires learning with data augmentation, and the values 

of the error function in the early stages of training do not necessarily reflect the final test 

accuracy values well, resulting in smaller correlations. This is also the reason why the influence 

of diversity is reduced in the proposed metric. 

In summary, this study addressed the problem of high computational cost in data 

augmentation policy search. By significantly shortening the training step in the search phase and 

using an metric that takes into account affinity and diversity in addition to validation accuracy, 

!"#$%&%'
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we were able to reduce the overall computational cost while performing augmentation policy 

search with high accuracy. 

 

 

 

Figure 3.10 Correlations between epoch 5 and epoch 200 for each metric in the study using CIFAR-10 
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4 Debug-Testing of DNN Software 

In the initial development stage of Deep Neural Network software (DNN software), we ensure 

that the required functions and prediction performance are achieved through iterative trial-and-

error processes, in which three viewpoints (elaborating and refining requirements, preparing 

datasets for training, and selecting appropriate machine learning models) are considered. This 

trial-and-error process corresponds to debugging in conventional program development. In the 

case of DNN software, the debugging activities involve generating datasets for debug-testing, 

monitoring the training and learning status, and identifying and removing root causes that 

hinder the fulfilment of requirements. In the following, we will report on a debug-testing method 

investigated in FY2020, discuss the experimental results obtained, and summarize our future 

plans. 

4.1 Direct cause of failure 

A standard method of supervised DNN learning involves two types of programs: training (or 

learning), and prediction (or inference). When training data is given and a learning task to 

achieve is made clear, a learning model for the target DNN software is selected, and some design 

decisions on the method used in the training and learning process is fixed. If we use available 

open-source machine learning frameworks, we may set up several parameters of the framework. 

The next step is to construct training dataset. Then, we run the training/learning program 

(possibly provided by the machine learning framework) with the training model and training 

dataset as input, and derive a trained DNN model as a computation result. More precisely, the 

training/learning program searches for a set of weight parameter values that define the trained 

DNN model uniquely. This trained DNN model defines behavior of the prediction/inference 

program. 

From a user's point of view, a prediction/inference program is the entity to use. In the case 

of a classification learning task, for example, the program calculates certainty levels of 

probabilities of classification results for an input data. By examining the output results, we can 

determine whether the DNN software works as intended. When the program does not produce 

results as expected, we localize possible fault locations and remove them. In other words, we 

conduct debugging. 

A failure may be occurred due to a flaw somewhere in the information used in the execution 

process of the training/learning program, either in the training dataset, the training model, the 

learning mechanism, or their combinations. However, direct causes of failure in prediction/ 

inference results are attributed to the trained DNN model or set of obtained weight parameter 

values. While a root cause of failure is somewhere and often not known, the failure is attributed 

to a defect in the weight parameter values or the trained DNN model. Thus, from users' point of 

view, a certain distortion of the trained DNN model seems a direct cause of the failure [22]. A 

method to measure such distortion degrees is needed regardless of the root causes. 
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In this chapter, we investigate whether we can detect faults in DNN software with an internal 

metric to measure such distortion degrees of trained DNN models. The weight parameter values 

in the DNN models are the output of the training/learning program, but there is no direct way to 

check its validity, because those expected weight parameter values cannot be known in advance. 

If such expected parameter values were known, training/learning could be skipped. We can just 

use those known values, as embedded in a trained DNN model, to implement a prediction/ 

inference program. 

4.2 Internal indices 

This section first introduces the notion of neuron coverage (NC). We consider a learning 

model as a network of neurons. Given a threshold, neurons whose output values exceed the 

threshold are said to be activated. When the number of neurons constituting the learning model 

is N and the number of activated neurons is A, the neuron coverage is defined as the ratio of 

active neurons is (NC = A/N). In [23], NC is assumed to be criteria for test coverages of trained 

DNN models; the research work investigates how the choice of input data for evaluation affects 

NC values. 

 

Figure 4.1 Trained DNN model. 

 

In this chapter, NC is assumed to be used as an internal index [24] to represent distortion 

degrees by appropriately choosing the target neurons to be considered. Figure 4.1 shows a 

schematic diagram of the trained DNN model. NCs are defined for the neurons in the final stage 

of the middle layer (or the penultimate layer as shaded gray), but not for all the neurons in the 

trained DNN model as in [23]. 

In general, in machine learning techniques, this penultimate layer is often considered to hold 

meaningful information. For example, in the case of an image classification task, the early stages 

of the model is responsible for the correlation analysis (analysis of patterns of pixel values), 

which plays a specific role in algorithms such as image recognition, and their calculation results 

are summarized in the penultimate layer. In this chapter, we assume that direct causes of defects 

are manifested in this internal layer. Furthermore, various statistical indices can be derived 

based on NC values of this layer. We will investigate, through experiments, what derived index is 

appropriate depending on test objectives to be investigated. 

Classification Algorithm
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4.3 Experiments: method and results 

We present the results of several experiments and discuss the usefulness of the internal or 

derived indices mentioned in the previous section. First, we show the results of comparative 

experiments when a training/learning program (or a learning framework) has faults in it. In the 

following, BI is the training/learning program which is a bug-injected version of a probably 

correct program PC. 

Figure 4.2 depicts the accuracy (the percentage of reconstructed correct answers) for a test 

dataset. In the experiments, a classical fully-connected network is chosen as the learning model, 

and different number of neurons are placed in the middle layer, which implies that each model 

is of different structural capacity. When we have a sufficient number of neurons (50 on the 

horizontal axis), there is no significant difference in the accuracy between PC and BI. Thus, it is 

difficult to distinguish between the PC and BI solely by examining their accuracy values, and thus 

the presence or absence of a defect cannot be identified. In addition to this finding (Figure 4.2), 

the results of an experiment to systematically investigate the situation further (Figure 4.3) are 

presented below. 

 

Figure 4.2 Learning models of different capacities. 

 

 

Figure 4.3 Relationship with internal indices 

 

Figure 4.3 plots values of the internal index (activated neurons or neuron coverage) on the 

vertical axis. Their absolute values, for example, of 10 for BI and 30 for PC are both around 0.7, 

making it impossible to distinguish between BI and PC if we do not take into account the 

structural capacity. The indices are not usable to examine the activated states of neurons. 
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Therefore, we will study if there is an appropriate indicator to be derived from the internal index 

of NC. As a set of data (a sample), in the test dataset, leads to a collection of neuron coverages, 

we can obtain some statistics from the sample such as the mean μ  and variance σ2, and 

calculate σ/μ . Figure 4.4 shows the case where this derived index σ/μ is used on the 

horizontal axis. From the values on the vertical axis, we can find out which leaning model has 

which value by referring to Figure 4.3. 

 

Figure 4.4 Derived index 

 

Figure 4.4 shows that we can distinguish between the PC and BI. Although the internal index 

cannot distinguish between the PC and BI with different capacities (Figure 4.3), a derived index 

of σ/μ can discriminate between the PC and BI. We can see that the neuron coverage basically 

contains a piece of useful information. 

Next, Figure 4.5 is a scatter plot of classification probability using corrupted data for the 

evaluation; the horizontal axis refers to the classification output by the BI and the vertical one 

by the PC.  

 

Figure 4.5 Classification certainty for corrupted data. 

 

In Figure 4.5, a △ represents an output value for corrupted data, which is supposed to be 

distributed on the dotted line passing through the origin, if we assume that the PC and BI output 

the same value for the same data. In fact, it can be seen that □ selected from the test dataset 
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(without any corruption) mostly arranged on the dotted line. On the other hand, corrupted data 

(△) are distributed along the solid line, indicating that the PC is a better classification certainty 

than the BI. It implies that the BI, containing bugs in it, is less robust, although the accuracy 

remains the same as that of PC (Figure 4.2). 

The following experiment confirms that differences in robustness can be detected by using 

an internal index (Figure 4.6). 

 

Figure 4.6 Differences in internal indices 

 

The corrupted data described above were input, and the internal index for each input was 

plotted on the horizontal axis. The □ distributed in a group on the right side shows the results 

of PC, and the ◇ distributed in a group on the left side shows the results of BI. The scatter plot 

shows that (1) the value of the internal index of PC is large, and (2) the correlation between the 

internal index and prediction probability (certainty of classification) is negligible (0.033). Next, 

we calculate σ/μ, which is 0.0876 for PC and 0.2183 for BI. Figure 4.6 shows results that 

corrupted data affect the robustness, and that the value of σ/μ  is considered to have 

correlations with the robustness. 

Next, we conducted experiments to investigate how distorted training data affect the trained 

DNN model. We plotted the accuracy for a test dataset common to all the cases. Thus, differences 

in the vertical axis indicate a certain difference (distortion degree) in the training dataset used 

for obtaining the trained DNN model (Figure 4.7). 

 

Figure 4.7 Differences in training datasets. 
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Figure 4.7 shows the two independent series for the PC (□) and BI (◇). From top to bottom 

in a series of each measured points (from better to worse accuracy), a training dataset with a 

larger distortion is used. Because the test dataset is common, the data shift of the test data is 

relatively larger as the distortion degrees in the training data is larger. Furthermore, the accuracy 

decreases as the shift becomes large. Figure 4.7 also shows that the value of the horizontal axis 

(σ/μ) is clearly different between the PC (□) and BI (◇). It can be confirmed that the accuracy 

and the robustness suggested by the σ/μ values are two independent perspectives. 

From the above (Figure 4.7), the distortion in training dataset can be examined by the 

method based on the accuracy. As is done in practice, the method based on the accuracy is useful 

when checking the training dataset quality. On the other hand, if there is a possibility that other 

factors such as faults in a training/learning program are involved (multiple defects are assumed), 

it is desirable to examine the values of the internal and derived indices (σ/μ) at the same time. 

4.4 Related work 

Neuron coverage (NC) is a simple quantitative measure introduced in DeepXplore [23] as a 

test coverage metric. In conventional software testing, test coverage is defined in terms of the 

basic block of program codes, which is the statements executed by a given test input data. A 

program is represented as a Control Flow Graph (CFG) whose nodes refer to executable 

statements. In the simplest case, the criterion is whether or not a node in the CFG is contained 

in an execution path induced by an input test, i.e., whether or not the statements are executed. 

As a DNN model is represented as a network, a kind of graphs, metrics similar to those for CFG 

can be introduced. The neuron coverage concerns whether neurons located at nodes are 

activated (output values of these neurons exceed a specified threshold), which is comparable to 

the C0 criterion defined on the CFG. DeepXplore assumes that high NC values refer to the 

situations where high percentage of neurons are exercised by input data, and discusses how to 

generate new test input data to increase the NC values. 

Neuron coverage would be a straightforward idea analogous to the conventional test 

coverage criteria. Later, satisfying the criteria, to achieve 100% in terms of NC, is found 

empirically not difficult. New metrics are proposed to take into account correlations among 

multiple neurons or those in different layers [25], which may be comparable to more elaborated 

coverage metrics, such as C1 or the others, in conventional software testing. 

The original NC is simple and easy to use as a metric to guide or control automated test 

generation processes. Usually, a classical data augmentation method picks up a seed data, from 

which a series of new data is to be generated by pre-defined data transformation algorithms. 

New test data are successively generated until the accumulated NC values is saturated. When 

reached the situation where no increase in the NC is seen, the generation method switches a seed 

data to new one and continue the process [26]. The classical data augmentation method can be 
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replaced by other approaches such as test input generation based on GAN [27]. Test generation 

method using GAN with a help of NC is reported in [28]. Although it is a simple metric, NC is now 

considered as a practical criterion to control the automated test generation process (coverage-

guided test generations). 

Some of early works on testing pre-trained DNN models adapt application-specific 

properties as software test oracles; the DNN models for regression tasks in the auto-pilot car 

application [26][27] use the calculated steering angle as the oracle. There is also a research work 

[29] to investigate whether test inputs to increase the NC values are useful for detecting faults. 

The usefulness of NC is dependent on what are considered failures. The work [29] also indicates 

that the correlation between NC and external indices such as the accuracy is weak. In this chapter, 

based on this observation that the correlation between the two is weak, an internal index based 

on the NC is used for the test, which is not contradictory to the discussion in [29], but rather in 

the same direction. Note that the test coverage is a criterion for terminating testing, while 

detecting faults depends on whether the test input data executes corner cases. These two notions, 

the test coverage and corner cases, refer to different aspects. In fact, it has been reported that 

the enhancement of coverage does not necessarily leads to the improvement of the efficiency of 

fault detection in conventional software testing. The same findings would be applicable to cases 

of DNN testing. 

In this chapter, we use the NC value as a simple test index, from which a sort of distortion 

degrees in trained DNN model is derived [22][24]. Our approach is based on a view that faults 

in DNN models appear as inappropriate NC values, whereas existing works use NC as a criterion 

for the test coverage. In our experiments, we were able to examine the reliability of the training 

and learning programs and the robustness of the trained DNN models. These are two primary 

concerns in debug-testing. 

4.5 Conclusion 

In this chapter, we used an internal index based on the neuron coverage (NC) defined on the 

penultimate layer for representing a sort of distortion degrees in trained DNN model. The NC is 

a scalar and easy to measure, and thus can be used as a light-weight test index. It, however, 

discards the information about the individual activated neurons, and thus lacks useful 

information. In fact, Kim et al. [30] proposes a method to estimate the distribution of activated 

neuron and to discuss the usefulness of input data for testing. Distribution on such neuron values 

may be considered to have rich information. In future, we will study how to debug training 

dataset by making use of such distribution information. 
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5 Debugging and Testing of Training Data 

5.1 Three Problem Settings 

In early stages of software development, in which programs are constructed to employ Deep 

Neural Networks (DNNs) [31], debugging and testing is performed to ensure that the core DNN 

components behave as expected. This is the process of feeding appropriate data to the DNN 

components and checking whether the predicted output is exactly what is expected. If the output 

is faulty in some ways, the DNN component under test contains a defect. The purpose of 

debugging is to identify and remove such unknown defects. 

Defects in DNN components are the direct cause, but not the root cause, of failures. In the 

standard method for building DNN components [32], three distinctive components are basically 

involved: (a) the machine learning infrastructure, (b) the training model (a template of the DNN 

model), and (c) the training data. The root cause is one of them or their certain combinations 

leading to the failure that the DNN component exhibits. The problem setting of the inspection 

differs depending on where the root cause is assumed [33].  

 The basis of DNN component construction is to make use of a training dataset consisting of 

a huge number of training data and derive the information inherent in those data by means of 

statistical methods so as to obtain a DNN model (a nonlinear function) inductively. In a naive 

way, we may examine the DNN model to identify root causes. However, since the DNN model is a 

nonlinear function to exhibit some functional behavior, the software testing method using 

indirect test oracles is often employed; we feed evaluation data to the DNN model and check 

whether output results are valid or not [34]. 

 In the case (a) above, the core of the machine learning infrastructure is a numerical program 

that solves an optimization problem, and the metamorphic testing method is known to be useful 

[35]. In the case (b), the learning model is not obviously flawed. It is to find an optimal or sub-

optimal learning model for the target machine learning task, which has been, in a sense, one of 

the main challenges of the DNN technology [31]. In this chapter, we discuss the case (c), i.e., 

debugging and testing methods of training data. 

5.2 Debugging Problems of Training Data 

Debugging and testing of training data is to revise (add or delete) the training data so as to 

obtain a DNN model that exhibits the intended functional behavior. This view is based on the 

observation that the bias of the training data affects much the trained DNN model. In the 

following, we specifically consider the debugging problem of training data for supervised 

machine learning classification tasks. 
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 Model Accuracy and Model Robustness 

In the supervised task of classifying input data into 𝐶 categories, a datapoint 𝑧 is a tuple 

(𝑧 = 〈𝑥, 𝑦〉) consisting of two types information, a multidimensional vector 𝑥  and its correct 

answer tag (or simply a label)  𝑦  (see Figure 5.1).   The DNN model, derived from a given 

training dataset 𝑆 (𝑆 =  {𝑧(𝑘) | 𝑘 = 1, … , 𝑁 }), is inspected against input evaluation data 𝑥. Its 

output is a 𝐶 dimensional classification probability vector 𝑃𝑥  corresponding to the data 𝑥. If 

𝑃𝑥[𝑗] (the 𝑗-th component of 𝑃𝑥), the component with the largest value  𝑗, is equal to y (𝑦 =

argmax(𝑗∈[1,𝐶])𝑃𝑥[𝑗]), then the DNN model is considered to return a correct answer. In this case, 

the multidimensional vector 𝑃𝑥 , in particular, the probability of the 𝑗-th component 𝑃𝑥[𝑗], is one 

of the good indicators of the model accuracy for the data 𝑥. For a collection of evaluation data 

𝐸 (𝐸 = {〈𝑥(ℓ), 𝑦(ℓ)〉 | ℓ = 1, … , 𝑀 }), Accuracy is the number of correct answers (percentage of 

correct answers) for the collection. In addition, the variability of the probabilities of the 

classification categories (sometimes referred to as Gini Impurity) is an indicator of the model 

accuracy as well. 

The accuracy for the training dataset 𝑆  and the one for the other dataset 𝐸 , different 

dataset from 𝑆, are compared. While the accuracy for 𝑆 is good, the accuracy is sometimes 

worse for 𝐸. This phenomenon is known as overfitting to the training dataset. Usually, both 𝑆 

and 𝐸 are constructed from one large data pool 𝐷, and are considered as different samples 

following the same data distribution; 𝐸 in this case is sometimes called a testing dataset as 

compared with the training dataset of 𝑆. When there is no overfitting where the accuracies are 

not much different each other, the DNN model is considered to exhibit good generalization 

performance. 

In the training data debugging problem, the evaluation data 𝐸  may be selected from a 

dataset other than 𝐷. For example, in positive testing, where the goal is to confirm that the 

system exhibits the expected behavior, as in the evaluation of generalization performance, we 

can choose 𝐸  from  𝐷 , in which 𝐸  is different from 𝑆 . However, to test the behavior in 

exceptional situations, we may choose a dataset 𝐹 for the evaluation that is not included in 𝐷. 

Model accuracy, measured with the percentage of correct answers, is not a good indicator for 𝐹.  

The evaluation criterion is model robustness, which expresses how the prediction probability is 

decreased depending on how much a data in 𝐹 is deviate from data in 𝐷 or 𝑆. 

In the development in practice, if the expected prediction performance is not achieved for a 

given 𝐷, new data is collected and the training data itself is revised. Then, the DNN components 

are derived using the new training dataset, namely in an iterative manner. Moreover, during 

testing, we evaluate the model accuracy and model robustness in view of both positive and 

exceptional testing.  

 Memorization of Training Data 

Overfitting or overlearning significantly affects the prediction performance (the model 
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accuracy and model robustness) of DNN models. Therefore, basic machine learning methods 

have been studied extensively to mitigate those problems; the study includes regularization or 

dropout [36]. In spite that such methods are adopted, the expected prediction performance 

cannot be obtained if the training dataset is inadequately biased. The debugging problem of 

training data is to improve the prediction performance of DNN models by revising the training 

dataset. Simply, it is to eliminate the inappropriate bias. However, it is difficult to evaluate the 

degree of bias as well as the appropriateness or inappropriateness of the bias. 

One traditional approach to evaluate the bias of the training data (sample) is to examine 

statistical characteristics of the sample. For example, given that 𝑆 = {〈𝑥(𝑘), 𝑦(𝑘)〉 | 𝑘 = 1, … , 𝑁 } , 

let 𝑆𝐶 = {〈𝑥, 𝑐〉 | 〈𝑥, 𝑐〉 ∈ 𝑆 and 𝑐 = 1, … , 𝐶 } where 𝑐 is a correct answer tag. If the sizes of 𝑆𝐶   

are equal in size, then we may say that there is no bias among 𝑆𝐶  from the viewpoint of the 

correct answer tag. However, each 𝑆𝐶  follows some data distribution 𝜌𝐶  and we don't know 

whether 𝑆𝐶  is sampled faithfully in regard to 𝜌𝐶 . To check this, we need to know 𝜌𝐶 , however, 

the data 𝑥 is multidimensional, and such a multidimensional data distribution is not easy to 

estimate. 

Alternatively, the prediction performance of DNN models is investigated by testing results 

with input evaluation data. DNN models derived from the same training data may exhibit 

different prediction performance, depending on the method of the machine learning. In other 

words, it is not enough to examine the statistical characteristics of the training data for the 

purpose of debugging the training data, but it is also necessary to consider how the bias of the 

training data is reflected in the trained DNN model. 

The relationship between DNN models and training data bias can be discussed in terms of 

the DNN models remembering the labels of the training data. Now, when the training data 𝑆 

contains a datapoint 〈𝑎, 𝑡〉 (〈𝑎, 𝑡〉 ∈ 𝑆), we can construct 𝑆′ so that the 〈𝑎, 𝑡〉 is removed from 

the training data 𝑆 (𝑆′ = 𝑆 ∖ {〈𝑎, 𝑡〉}). Let each DNN model obtained by training with either 𝑆 

or 𝑆’ be 𝑀 or 𝑀’ respectively. Then, the result, 𝑃𝑎  for 𝑀 or 𝑃𝑎
′ for 𝑀’, is obtained for the 

common input data 𝑎. If the classification result 𝑡 for 𝑃𝑎[𝑡] is very likely and 𝑃𝑎
′[𝑡] is less 

likely, then 𝑀 is said to memorize the datapoint 〈𝑎, 𝑡〉 used as one the training data. From this 

definition, we can see that the DNN model memorizes the training data in the overfitting 

situation, where 𝑃𝑎[𝑡] is apparently more likely than 𝑃′𝑎[𝑡]. 

For DNN models, it is known that the Membership Inference is possible. The problem is to 

find out if a datapoint 〈𝑥, 𝑦〉 (〈𝑥, 𝑦〉 ∈ 𝐷) was included in the training dataset (〈𝑥, 𝑦〉 ∈ 𝑆) just 

from the information obtained by feeding data to the trained model, 𝑀𝑆(𝑥). Black box methods 

make use of the classification probability vector 𝑃𝑥  [37], or white-box methods use the 

information of the loss function ℓ(𝑌(𝑊; 𝑥), 𝑦) calculated in the process of executing 𝑀𝑆(𝑥) 

[38], where 𝑊 is the training parameter or weight and 𝑌(𝑊; 𝑥) is the internal representation 

of the prediction for the input 𝑥. 

Intuitively, Membership Inference method is based on the observation that the distribution 

of 𝑃𝑥  or ℓ(𝑌(𝑊; 𝑥), 𝑦) is different depending on whether the datapoint 〈𝑥, 𝑦〉 is included in 

the training dataset 𝑆 or not. Furthermore, these differences in the distributions are somehow 

attributed to the memorization of training data including overfitting cases [38]. Thus, the 
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approach to mitigate the threats of Membership Inference is to remove those data, that are 

memorized easily, from the training dataset, in addition to employing a machine learning 

method that avoids overfitting [39].  

We now examine the situation involved with the memorization of training data. Consider a 

classification problem as in Figure 5.1; we assume 𝑎 ≠ 𝑏  whereas 𝑡 = 𝑢 . Figure 5.1 (a) 

illustrates a situation where the prediction probability of 〈𝑏, 𝑢〉, a training data moved away 

from 〈𝑎, 𝑡〉, decreases as the distance between them becomes large. Figure 5.1 (b) shows that 

removing that datapoint 〈𝑎, 𝑡〉 from 𝑆 does not significantly affect the prediction probability 

of the data 〈𝑏, 𝑢〉 when the training data are dense in 𝑆. In other words, the removed training 

data is not memorized in that it does not significantly affect the prediction results. Figure 5.1 (c) 

represents a situation where the training data are sparse. Contrary to Figure 5.1 (b), it represents 

that the influence becomes large and is firmly remembered. Such outlier data significantly affects 

the predictive classification performance of the DNN model. 

Finally, we consider the Membership Inference viewed from the training data debugging 

problem. In the situation where training data are memorized, the distribution of either 𝑃𝑥  or 

ℓ(𝑌(𝑊; 𝑥), 𝑦) is very different depending on whether the datapoint is included in the training 

dataset 𝑆 or not. The Membership Inference method makes use of the fact that the predictive 

performance for 𝑧′, far from training 𝑧 datapoints, is poor. In other words, we can think of the 

Membership Inference as a test of model robustness; the phenomenon of training data 

memorization is related to model robustness. 

 

 
(a) Predicted probability in the neighborhood   (b) Dense region   (c) Sparse region 

Figure 5.1 Training data placement and prediction certainty. 

 

Here, we refer to the schematic situation in Figure 5.1. Removing the dense data shown in 

Figure 5.1 (b) would have little impact on the model accuracy. On the other hand, removing the 

data in a sparse region as shown in Figure 5.1 (c) would improve model robustness, but would 

reduce model accuracy in the neighborhood because there would no longer be data to support 

their predictive classification results. Alternatively, adding new data in the neighborhood 

without removing this datapoint will make the region dense and improve the local model 

accuracy. Therefore, detecting outliers in the training data set 𝑆 is important for debugging 

dataset. 

Figure 5.1 schematically illustrates that the predictive classification performance of the input 
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data is affected by the location relationship with the training data. However, it does not say how 

the location relationship is defined, i.e., from what aspects of the data, the location relationship 

is defined. Conversely, now the question is how the location relation should be defined when 

discussing the difference in prediction classification performance; the outlier detection problem 

will become clear when such criteria are precisely defined. 

5.3 Outliers and Neuron Coverage 

We consider outlier detection methods for the purpose of training data debugging. 

 Outliers in Training Data 

The debugging problem of training data is to find out outliers in the training dataset and to 

decide how to deal with the outliers according to the purpose of the DNN model under 

development. How we handle the outliers is related to the requirements specification of the DNN 

model. Thus, the general discussion of training data debugging may be limited within 

establishing a technique for outlier detection. 

In general, outliers are data that have different characteristics from the data that make up 

the majority, and whether or not they are outliers is defined based on the data distribution 

(statistical data model) that the collection of target data exhibits [40]. For example, if the 

probability density function of the data distribution is known, then we can check whether the 

data are outlier or not based on the likelihood of the data. 

In a naive way, we consider whether it is an outlier or not based on the empirical distribution 

of the training data. However, the training data is a multi-dimensional vector, and it is difficult to 

know the empirical distribution in a compact form. For example, it is difficult to apply methods 

such as Kernel Density Estimation, and as a result, the outlier detection method based on 

likelihood is not practical. Alternatively, analysis methods similar to Combination Testing, which 

is known in the field of software testing, may be applied. By selecting components (features) that 

are considered having a large impact on the empirical distribution and focusing on such 

representative dimensions, we may conduct analysis as an approximate of the case on the whole 

empirical distribution. While practically applicable, outliers are rare by definition, and the 

effectiveness of this approximate method is questionable. 

For a slight change of perspective, the robustness radius of the standard method of analyzing 

model robustness [41] is considered. For two datapoints 〈𝑥, 𝑦〉 and 〈𝑥′, 𝑦′〉 and the predictive 

classification results for each of the outputs 𝑃𝑥[𝑦] and 𝑃𝑥′[𝑦′], let the robust radius 𝛿 be the 

tolerance level 𝜀 of the difference between the outputs; for a given 𝜀, the robust radius is the 

maximum difference of input data that satisfies 𝛿 ( | 𝑃𝑥[𝑦] − 𝑃𝑥′[𝑦′] | ≤ 𝜀 when | 𝑥 − 𝑥′  |𝑝 ≤

𝛿 ). Here, we define the difference of input data in terms of 𝐿𝑝-norm. In a naive way, for a given 

𝜀 for given input data, we consider that the model robustness is good if the robustness radius 𝛿 

is large. However, the calculated radius 𝛿𝑝 is dependent on the choice of the norm 𝐿𝑝. While 
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the definition of model robustness by the robust radius is strict, the analysis in the space of input 

data requires further discussion or interpretation of whether the norm used is appropriate or 

not, which complicates the problem. 

We consider now how the training data 〈𝑎, 𝑡〉 affect the prediction results of the other data 

〈𝑏2, 𝑢2〉 that are classified to different classification categories (𝑡 ≠ 𝑢2) (see Figure 5.1 (a)). The 

two datapoints have different classification categories and can be assumed to be far apart in the 

input data space. We assume that the training dataset 𝑆 contains 〈𝑎, 𝑡〉 and let 𝑆’ be the one 

to be removed 〈𝑎, 𝑡〉 from 𝑆. Further, let the DNN models obtained from 𝑆 and 𝑆’ be 𝑀 and 

𝑀’ respectively, and let the predictive classification results for the data 〈𝑏2, 𝑢2〉 be 𝑃𝑏2 and 

𝑃𝑏2
′ . With the method of Influence Functions, which analyzes how 𝑆 and 𝑆’ affect the error 

function, we are able to know that there exists 〈𝑏2, 𝑢2〉 such that the values of 𝑃𝑏2[𝑢2] and 

𝑃𝑏2
′ [𝑢2] are different [42]. It shows that the presence or absence of the training datapoint 〈𝑎, 𝑡〉 

affects the classification probability of 〈𝑏2, 𝑢2〉. Therefore, it is difficult to obtain the desired 

information by analyzing the differences in the input data space (𝑎 ≠ 𝑏2) . 

From the above, we can see that it is difficult to systematically detect the desired outliers by 

analyzing a collection of training data in the input data space. The reason for this is that model 

accuracy and model robustness are affected not only by the training data but also by various 

factors involved in the training process, such as the machine learning method. However, we do 

not claim that the analysis in the input data space is completely ineffective. Such an analysis 

would give us a vague idea of the empirical distribution of the training data. 

In this chapter, we think that even if the features of the input data space are related to model 

accuracy and model robustness, they are not appropriate as a systematic training data 

debugging method. We will study systematic methods for detecting outliers in training data. 

 Active Neurons 

Neuron coverage is defined as the ratio of active neurons to the number of target neurons 

considered [43]. 𝑀𝑆(𝑥) denotes the situation where the input signal (of x) propagates through 

the DNN model and activates each neuron. When the output of a particular neuron exceeds a 

given threshold, we call it active, an active neuron. 

Neuron coverage was initially proposed as a coverage criterion for coverage-driven test data 

generation [43]. The active neurons for the input data 𝑥 provide a useful information in that 

they influence the output results. On the other hand, the neurons not involved in the predictive 

inference process, are considered to be inactive. The input data that produce inactive neurons 

do not effectively test all the neurons, and then new input test data are needed so that they 

further activate the inactive neurons. When a set of input data makes all the neurons active, the 

set of test data are considered to reach 100% of the coverage. 

After the original proposal in [43], there have been several research works to study the 

practical usefulness of the neuron coverage as a test coverage criterion [44][45][46]. In 

particular, it has been recognized that 100% of the neuron coverage is not difficult to achieve 

and thus is weak as a test coverage criterion, which is similar to the case of the C0 criterion in 
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conventional software testing methods. 

On the other hand, we may consider that the training was appropriate in the first place, 

producing inactive neurons not involved in the predictive inference process. In this case, we can 

add new input data to the training data and conduct re-training [43]. This suggests the idea of 

using the neuron coverage as a criterion for evaluating the quality of the model 𝑀𝑆 . The 

following is a discussion from the viewpoint of the neuron coverage as a model quality 

evaluation criterion [47]. 

In DNN models 𝑀𝑆  for classification tasks, the upstream layers near the input perform 

encoding 𝐸′  (Encoding), and is followed by classifying 𝐶′ . Classifying is done after the 

encoding (𝑀𝑆 = 𝐶′ ∘ 𝐸′); 𝑀𝑆(𝑥) = (𝐶′ ∘ 𝐸′)(𝑥) = 𝐶′(𝐸′(𝑥)). When the output is a classification 

probability vector, we place softmax functions in the final layer (logits) of the output; 𝑀𝑆 =

SOFTMAX ∘ 𝐶 ∘ 𝐸′. Next, we may place a layer of Fully Connected Network (FCN) between 𝐸’ 

and 𝐶; 𝑀𝑆 = SOFTMAX ∘ 𝐶 ∘ FCN ∘ 𝐸. 

In FCN, a neuron in a layer considered is connected to all the neurons in the next layer, thus 

the output is swap-invariant, which means that the output is preserved when the neurons are 

exchanged within the same layer. Therefore, the neuron coverage may be useful to summarize 

the neuron activity in FCN layers. On the other hand, when the constituent neurons play a 

specific functional role, such as in SOFTMAX or CNN, it is questionable whether the neuron 

coverage, which considers all neurons equally, provides useful information. In fact, two different 

definitions are studied for CNNs, and depending on which one is adopted, the value of neuron 

coverage is different [48]. In this chapter, we consider neuron coverage for the FCN layer. 

A series of experiments are conducted [48] in which training data are systematically 

generated by means of a classical data augmentation method and the effects on neuron coverage 

are investigated. The results showed that the difference in training data had influenced the 

neuron coverages at the 𝐸′ layer, while only a small effect was made on the 𝐶 layers. In addition, 

although the testing data are changed, very small differences are observed on the last layer in 𝐶 

(Penultimate Layer of the whole model). It implies that the differences in the training data are 

reflected in the FCN layer where 𝐸′ = FCN ∘ 𝐸 as introduced early. 

In addition, in previous experiments [35][47] in which we have measured the neuron 

coverage on the FCN located as the last layer of 𝐶, we observed little correlation between the 

classification prediction probability and neuronal coverage. Therefore, the neuron coverage may 

be considered to represent an aspect independent of the information contributing to the model 

accuracy. If it is found to be correlated with the model robustness, we can expect that the 

neuronal coverage on a particular layer is useful as a method to detect outliers for our purposes. 

5.4 Experiments and Discussions 

We experimentally investigate the relationship between neuron coverage and model 

robustness, and discuss whether information concerning neuron coverage is useful for 

debugging training data. 
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 Steps of Experiments 

The experiment consisted of five steps, including the preparation work: using the MNIST 

dataset, we assumed a learning model of the form 𝑀𝑆 = SOFTMAX ∘ 𝐶 ∘ FCN ∘ 𝐸 . Hereafter, the 

MNIST training dataset is denoted as LS (60,000 elements) and the test dataset is denoted as TS 

(10,000 elements). 

– Step 1: Measure the active neurons derived by 𝐿𝑆 . Let 𝑀  be the trained model 

obtained by training 𝑀𝑆 with 𝐿𝑆. Let 𝐴𝑐𝑡𝑥  be the collection of active neurons for the 

FCN layer in M generated by the multi-dimensional vector data x（〈𝑥, _〉 ∈ 𝐿𝑆）. If the 

number of neurons constituting the FCN layer is denoted as |FCN| , the neuron 

coverage is 𝑁𝐶𝑥 = |𝐴𝑐𝑡𝑥|/|FCN|. 𝑁𝐿𝑆 = {𝑁𝐶𝑥 | 〈𝑥, _〉 ∈ 𝐿𝑆} for the entire element of 

𝐿𝑆. Then, obtain the data distribution of 𝑁𝐿𝑆 . 

 

– Step 2: Using the data distribution of 𝑁𝐿𝑆 as a basis, select training data systematically 

from 𝐿𝑆  to obtain 𝐿𝑆𝑗
𝑃 . The specific selection method and the meanings of the 

subscripts P and j are explained in Section 5.4.2.2. 

 

– Step 4: Synthesize data from 𝑇𝑆 to evaluate model robustness. Let the generating 

function be 𝑇𝑘  and obtain the date 𝐸𝑆𝑘  for the evaluation data（𝐸𝑆𝑘 = 𝑇𝑘(𝑇𝑆)）. The 

specific synthesis method is described in Section 5.4.3.1. Depending on the data 

synthesis method 𝑇𝑘 , the trained model 𝑀 is used if necessary. 

 

– Step 5: Evaluate the trained learning model 𝑀𝑗
𝑃  with the data 𝐸𝑆𝑘  to obtain a model 

robustness index and investigate the difference in 𝑀𝑗
𝑃 , i.e., the impact of 𝐿𝑆𝑗

𝑃on the 

model robustness.  

 Neuron Coverage Distribution 

5.4.2.1 Measurement of Neuron Coverage 

A set of neuron coverage 𝑁𝐿𝑆 was obtained against all the data in the training dataset LS, 

and the data distribution (i.e. neuron coverage distribution) is shown in Figure 5.2. In Figure 5.2 

(a), the horizontal axis represents the neuron coverage for the input data and the vertical axis 

shows the counts that yielded the corresponding neuron coverage values: the graph is a result 

of KDE. Figure 5.2 (b) is a scatter plot showing neuron coverage versus input data on the 

horizontal axis and prediction probability for the same input data on the vertical axis. Red dots 

represent data for which the prediction is correct (true) and blue dots represent data for which 

the prediction is incorrect (false). Both the training data accuracy and the test data accuracy 

were 99%. 
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(a) Neuron coverage vs data counts     (b) Neuron coverage vs prediction probability 

Figure 5.2 Results for training data 

 

Figure 5.2 (a) shows that the measured neuron coverage is distributed between 0.38 and 

0.84. The median and mean are both 0.60. Figure 5.2 (b) shows that there is little correlation 

between neuron coverage and predictive certainty (predictive probability value). In Figure 5.2, 

for example, the area circled by the oval corresponds to training data leading to neuron coverage 

that are greater than the mean. In particular, not only do the predicted probability values of the 

correct tag vary widely, even for the same value of neuron coverage, but they also include both 

correct and incorrect answers. Even if we focus on regions with small values of neuron coverage, 

the same trend is observed. Therefore, neuron coverage represents the internal state of the 

predictive inference process, but does not correlate with end-to-end output values. 

Small neuron coverage suggests that the input data does not have significant information 

that contributes to classification. In the extreme case, if the pixel value of the input image is zero, 

there are no neurons to be activated, resulting in zero neuron coverage. The measurement 

results were in the small range of about 0.38, suggesting that the "weak" input signal was utilized 

to lead to the predictive classification results. On the other hand, large neuron coverage indicates 

that there are many activated neurons. A large neuron coverage value does not necessarily 

contribute to an improvement in the probability of predicting the correct answer. It suggests that 

the input data does not have information that leads to a significant classification result, i.e., it 

cannot distinguish between different classifications. In fact, when the number of neurons in the 

measured layer is small and the structural capacity is thus small, the correct answer rate is 

inferior while the neuron coverage is larger: it is consistent with the measured results（Figure 

5.2 and Figure 5.3）. Therefore, under the assumption that structural capacity is sufficient, using 

data for training, where those are located near the center of the data distribution of neuron 

coverage, can be expected to actively select data that contribute to proper classification and 

model robustness without affecting model accuracy much. 

In this chapter, we summarize the above observations into two hypotheses. Let 𝐿𝑆 be the 

training dataset to be debugged, and consider the data distribution of a collection 𝑁𝐿𝑆  of 

neuron coverage for all the elements in 𝐿𝑆. 
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［Hypothesis 1］Neuron coverage is correlated with model robustness 

［Hypothesis 2］The data distribution of 𝑁𝐿𝑆 provides the criteria for outliers. 

 

Thereafter, experiments will be conducted to confirm the validity of the hypothesis, and 

guidelines for training data debugging will be outlined. 

5.4.2.2 Segmentation of Training Data 

Based on the data distribution of the neuron coverage 𝑁𝐿𝑆 of the training data (Figure 5.2 

(a)), we systematically select the training data from the LS to obtain 𝐿𝑆𝑗
𝑃 . Here, the same number 

(40,000) of training data 𝐿𝑆𝑗
𝑃  are systematically extracted from 𝐿𝑆 of the size 60,000. Let the 

MNIST training data 𝐿𝑆 be divided into 𝐿𝑆〈𝐶〉 according to the classification class C（𝐿𝑆 = ∪

𝐿𝑆〈𝐶〉） , the following two extraction methods are considered. When the designation of the 

selection mode 𝑃 is 𝑁, we obtain 5 datasets 𝐿𝑆𝑗
𝑁  over the whole 𝐿𝑆, where the size interval 

of the neuron coverage is [5000 × 𝑗, 5000 × 𝑗 + 39999] (𝑗 = 0,1,2,3,3,4). Alternatively, when 

the selection mode 𝑃 is 𝐶, for each 𝐿𝑆〈𝐶〉, 400 elements are selected in the similar way and 

then combined to obtain 𝐿𝑆𝑗
𝐶 . Histograms of each are shown in Figure 5.3. 

Comparing 𝐿𝑆𝑗
𝑁  in Figure 5.3 (a) and 𝐿𝑆𝑗

𝐶  in (b), we can see that the outline of the 

distribution is different. 𝑛  addition, the distribution of 𝐿𝑆〈𝐶〉 originally differed by the 

classification class 𝐶. According to the measurements, for example, 0 and 6 are biased toward 

regions with small values of neuron coverage (< 0.5), while 3 and 8 are biased toward regions 

with large values (> 0.5).  𝐿𝑆𝑗
𝐶  which extracts and combines the same numbers of data for each 

𝐿𝑆〈𝐶〉, is more gentle than 𝐿𝑆𝑗
𝑁 , which shows a shape like a "sheer cliff". 

 

 

(a) Segmentation of the entire training data（𝐿𝑆𝑗
𝑁） 

 

(b) Combination of segmentation by the classification class（𝐿𝑆𝑗
𝐶） 

Figure 5.3 Segmentation of the training data 
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5.4.2.3 Indicator for Model Accuracy 

Measure the model accuracy of the trained training model 𝑀𝑗
𝑃  obtained using the training 

data 𝐿𝑆𝑗
𝑃  of size 40,000 (10 models in total). The MNIST test dataset 𝑇𝑆 is used as the data for 

the evaluation. 𝑇𝑆 is considered to have the same data distribution as 𝐿𝑆, but different from 

𝐿𝑆𝑗
𝑃 . In fact, when compared in terms of neuron coverage, 𝑁𝐿𝑆 and 𝑁𝑇𝑆 showed the identical 

distribution. Therefore, the neuron coverage distributions for 𝐿𝑆𝑗
𝑃  and TS are different. 

difference is anticipated to affect the quantitative results of model accuracy. The finding that 𝑁𝐿𝑆 

and 𝑁𝑇𝑆 show the same distribution is consistent with the assumption that there is no sample 

selection bias between 𝐿𝑆 and 𝑇𝑆. 

Here, we investigate how the difference in training data 𝐿𝑆𝑗
𝑃  affects the model accuracy in a 

qualitative way. The percentage of correct answers and Gini coefficients are shown in Figure 5.4 

as the indicators of model accuracy. Blue represents the case of extraction from the whole (𝑀𝑗
𝑁) 

and red represents the case of extraction by class (𝑀𝑗
𝐶 ). The horizontal axis represents the 

difference in trained training models (𝑀𝐾 = 𝑀𝑗
𝑃 , 𝐾 = 1,2,3,4,5). The percentage of correct 

answers is about 96%, not much difference between 𝑀𝐾 . The relative differences between 𝑀𝐾  

are small, about 0.6% in the case of total extraction and 0.3% in the case of class-by-class 

extraction. The Gini coefficient, which represents the degree of variation among classes, is small 

(less than 0.002), indicating equal accuracy among classes. From the above, it is confirmed that 

the difference in 𝐿𝑆𝑗
𝑃  has a small correlation with model accuracy.  

For the Gini coefficients, the graph trends are different for the overall extraction (blue) and 

for the class-by-class extraction (red). The former is a gradual monotonic decrease and the latter 

is a gradual monotonic increase. As can be seen from Figure 5.4, there is a difference in the 

number of data per classification class between the overall extraction (blue) and the extraction 

by class (red). Compared to the percentage of correct answers, the Gini coefficient is probably 

affected more by training data from other classification classes, which may be related to the 

cause of the difference in monotonicity. though the graph is not shown, there was a strong 

correlation between the average percentage of correct answers and the average predicted 

probability. 

 

Figure 5.4 Model Accuracy 

Correctness (Accuracy) Correctness (Gini coefficient)
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 Measurement of Model Robustness 

In empirical evaluation of the model robustness, data for evaluation should be prepared with 

statistical properties that differ from training or test data.  

5.4.3.1 Data Augmentation for Evaluation 

We outline the basic approach to discussing model robustness. The robust radius δ [41] is 

defined as | 𝑥 − 𝑥′  |𝑝 ≤ 𝛿 , satisfying | 𝑃𝑥[𝑦] − 𝑃𝑥′[𝑦′] | ≤ 𝜀  for a given 𝜀 : the larger 𝛿 , the 

better the robustness. 

In the measurement experiment, given a reference data point 〈𝑥, 𝑦〉 , we introduce a 

transformation function 𝑇 that systematically finds 𝑥′ (𝑥′ = 𝑇(𝑥), 𝑦′ = 𝑦 in the classification 

task). We define the data distance 𝑑𝑇(𝑥) = |𝑥 − 𝑇(𝑥)|  using the L2 norm. For a given 𝜀, the 

robust radius 𝛿 can be obtained empirically by varying 𝑑𝑇(𝑥) and observing the difference in 

the prediction probability. However, as will be explained later, it is difficult to properly determine 

the transformation function 𝑇  such that 𝑑𝑇(𝑥)  varies smoothly. Here, we consider a 

transformation function 𝑇  that produces data showing different qualitative properties. 

Specifically, Gaussian noise insertion, missing small areas, semantic noise insertion (frame, 

underline), and affine transformations (rotation, reduction and expansion) were used.  

The elements of the MNIST test dataset 𝑇𝑆  are used as reference data and the 

transformation function 𝑇𝑘   is applied to generate evaluation data ( 𝐸𝑆𝑘 = {〈𝑇𝐾(𝑥), 𝑦〉 | 〈𝑥, 𝑦〉 ∈

𝑇𝑆} ). In addition, for 𝑑𝑖𝑓𝑓𝐾(𝑥) = | 𝑝𝑥(𝑦) − 𝑝𝑇(𝑥)(𝑦) | , let 𝐷𝑖𝑓𝑓𝐾 = { 𝑑𝑖𝑓𝑓𝐾(𝑥) | 𝑥 ∈ 𝑇𝑆 } . 

Furthermore, let 𝑑𝐾(𝑥) = | 𝑥 − 𝑇𝐾(𝑥) |. Then, we examine the characteristics of 𝐸𝑆𝑘  using the 

trained model 𝑀 obtained by training with 𝐿𝑆.  

Figure 5.5 shows the generated images, scatter plots of the predicted probability 𝑝𝑥(𝑦) of 

𝑇𝑆  data on the horizontal axis and 𝑝𝑇(𝑥)(𝑦) of 𝐸𝑆  data on the vertical axis, and data 

distribution of 𝑑𝐾(𝑥)  for eight different transformations. From the images, it can be seen that 

they all preserve the visual features of the data 𝑥 chosen as the reference. The scatter plots 

show that the distribution differs depending on the data generation method for evaluation, and 

that its impact on the prediction probability is quite different.  

The top left two are with Gaussian noise added, but the magnitude of the noise is different: 

the larger the noise, the greater the variability of the prediction probability. The distribution of 

𝑑𝐾(𝑥)  shows a sharp peak from the way the magnitude of the Gaussian noise given. It is easy to 

change 𝑑𝐾(𝑥)  by increasing the noise, but on the other hand, the effect on the visual image is 

significant and the data is not appropriate for the evaluation. The two at the bottom left are 

corrupted data with a certain missing area. though 𝑑𝐾(𝑥)  can be varied by changing the size of 

the missing region, the distribution of each 𝑑𝐾(𝑥) shows a sharp peak. Extremely large missing 

areas will destroy the original image and reduce the usefulness of the data for evaluation. 

The top two on the right are semantic noise insertions (frame, underline). Due to the 

properties of the noise insertion method [35], the value of 𝑝𝑇(𝑥)(𝑦) is approximately 1. It is 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology  
4th English edition  DigiARC-TR-2024-02 / CPSEC-TR-2024002 

48 

 

clear from visual inspection that the frame has a larger value of 𝑑𝐾(𝑥) : the distribution shows 

a sharp peak. The two affine transformations in the lower right corner have a sloping 

distribution. Taken as a whole, the distribution of 𝑑𝐾(𝑥) is skewed for each transformation 

method, but each shows a distinctive peak.  

 

 

Figure 5.5 Data for Model Robustness Evaluation 

 

Figure 5.6 plots the mean value of  𝑑𝐾(𝑥)  on the horizontal axis and the mean value of 

 𝑑𝑖𝑓𝑓𝐾(𝑥) on the vertical axis. he whole of the data for evaluation 𝐸𝑆𝑘  together means that the 

evaluation can be done with various  𝑑𝐾(𝑥) values. essence, the evaluation of model robustness 

is being conducted using a variety of data of different qualitative nature. In fact, it is important 

to know what kind of data of what nature to use for evaluation, which is the same "test case" 

issue important in traditional software testing as well.  

 

 

Figure 5.6  Mean Distance from Base Data 
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5.4.3.2 Indicator for Model Robustness 

In the present experiment, the average value of 𝐷𝑖𝑓𝑓𝐾  defined previously is used as an 

indicator of empirical model robustness using data for evaluation. As in the case of model 

accuracy test, we measure the average value of each 𝐷𝑖𝑓𝑓𝐾  for the trained model 𝑀𝑗
𝑃   obtained 

using the training data 𝐿𝑆𝑗
𝑃 . Figure 5.7 shows the results: (a) shows 𝑀𝑗

𝐶   and (b) shows 𝑀𝑗
𝑁 . 

Although there are some differences among the evaluation data, the general trend is not 

monotonicity among 𝑀𝐾 . In the case of model accuracy (Figure 5.4 (a)), the relative difference 

between M_K is less than 1%, whereas in Figure 5.7 the difference is about 10%. Differences in 

𝑀𝐾 , i.e., 𝐿𝑆𝑗
𝑃  used for training, have a significant impact on model robustness.  

From the way the training data 𝐿𝑆𝑗
𝑃  constructed, we consider that the training data near the 

center (originally a region with large frequencies), where both sides of the neuron coverage 

distribution are removed, contributes much to the model robustness.  

 

 

(a) Class-by-class extraction             (b) Overall extraction 

Figure 5.7  Indicators for Model Robustness 

 Debugging Strategy 

We obtained trained training models 𝑀𝑗
𝑃   using training data 𝐿𝑆𝑗

𝑃  that were systematically 

extracted based on the data distribution of neuron coverage 𝑁𝐿𝑆  for training data, and 

evaluated model accuracy and model robustness for these 𝑀𝑗
𝑃 . The results show that while the 

model accuracy of 𝑀𝑗
𝑃  is comparable, the model robustness is different. This is consistent with 

[Hypothesis 1] (neuron coverage is correlated with model robustness).  By excluding the two-

tailed hem of the 𝑁𝐿𝑆 data distribution as outliers, 𝑀2
𝐶  and 𝑀2

𝑁   were found to be generally 

reasonable due to their impact on model robustness. This is consistent with [Hypothesis 2] (𝑁𝐿𝑆 

data distribution is the criterion for outliers). 

Here, we present briefly a debugging strategy for the training data, referring to Figure 5.8. 

When the neuron coverage of a given training dataset shows the data distribution on the left side 
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of the figure, the central region of the range containing a reasonable number of data is selected, 

i.e., the training data corresponding to the two-sided hemisphere is discarded, and the training 

data showing the data distribution on the right side of the figure is obtained. Next, from among 

the new training data candidates, the training data whose neuron coverage values correspond 

to the central region is selected and added to the training data set until a sufficient number of 

data is obtained, while maintaining the data distribution on the right side. Additionally, 

debugging experiments based on this strategy were conducted by an independent group. The 

proposed method was applied to a CNN-based image classification task to confirm that the 

debugging strategy described above is feasible.  

 

 

Figure 5.8  Debugging Strategy for Training Dataset 

5.5 Final Remarks 

To conclude this chapter, we review recent research in software engineering on the 

debugging problem of deep neural networks (DNN) software and position the technologies 

discussed in this chapter. In general, when DNN software exhibits defects, the direct cause is a 

flaw in the trained model. On the other hand, the construction of trained models involves diverse 

elements: (a) the machine learning infrastructure, (b) the learning model (the template for the 

DNN model), and (c) the training data. It is often not clear what the root cause is. 

In practice, DNN software development is conducted on existing machine learning 

frameworks, and includes the programming tasks of scripts that use the APIs provided by the 

framework. At this time, the framework may have problems, and the machine learning 

mechanism (the program that solves the numerical optimization problem) itself may be 

inappropriate, or the library functions called by the script (e.g., learning model definition 

functions) may be flawed [49]. This is the case in (a) above and is the responsibility of the 

framework provider. 

On the other hand, from the viewpoint of deep NN software development using machine 

learning frameworks, defects in the scripts are the cause of defects [50]. Depending on the type 

of defect, a learning model different from the required specification may be introduced, an error 

in data type (e.g., tensor dimension) may occur, or the configured hyperparameters may be 

inappropriate. This is the case in (b) above. In machine learning research, it is a matter of logical 

design to select an appropriate learning model for a given machine learning task. In contrast, the 

question is whether the appropriate "program" according to these higher-level specifications is 
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being implemented. There are several studies, such as a method to localize the defective points 

of the learning model by monitoring the error function and gradient during the training process 

[51]. 

In general, the functional behavior of DNN software is governed by the training data. 

Although it is difficult to address this problem in general, there are studies that approach it as a 

fairness issue [52], where the sensitive attributes of the input data often affect the results. his 

method can be classified as (c) above in that it focuses on training data, but it is a feature 

selection problem and a debugging problem related to data definition.  

This chapter addresses the problem in (c), where the root cause of the failure is a bias in the 

distribution of the training data. Intuitively, the problem set up is as follows. When a DNN model 

trained with given training data does not show the expected model performance (especially 

model robustness), the data distribution is transformed by selecting and adding training data to 

obtain a DNN model that achieves the desired performance. 

In general, research approaching debugging problems from software engineering assumes 

that programs, such as scripts, have explicit symbolic representations. There has been little 

progress in exploring methods for debugging data distributions of continuous quantities. On the 

other hand, studies from machine learning recognize the importance of the data distribution and 

deal with the case by means of statistics-based methods, where the distribution function is 

known. However, machine learning deals with multi-dimensional vectors whose data 

distribution is difficult to represent in a straightforward manner. Even if a theoretical 

formulation is possible, it is not directly useful for the practice of debugging.  

The method in this chapter uses the empirical distribution of data (continuous quantities) as 

guiding information for "debugging" while discarding individual data (discrete quantities). In 

particular, we simplified the problem by expressing the properties of the data to be debugged in 

terms of neuron coverage distributions, which can be attributed to the method of handling one-

dimensional data distributions. It can be said to combine a statistical view with software 

engineering methods. 
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6 Evaluation and Improvement of Robustness 

In this chapter, robustness means the ability that a machine-learned model keeps correct 

output even when noise is added to input (including adversarial examples). For example, it 

evaluates how much noise can be added to the model without changing the correct results. One 

of the measures of its robustness is the maximum safe radius (MSR). In this chapter, we explain 

adversarial example and the maximum safe radius in a classifier based on a feedforward neural 

network, and then report the results of a survey on techniques for estimating and increasing the 

maximum safe radius. 

6.1 Robustness measure (maximum safe radius) 

It is well known that machine-learned models on inference programs mis-classify input data 

even when very small perturbations are added. Such perturbated data are called adversarial 

examples [53], and adversarial examples have been actively researched in recent years. The set 

𝐴𝑑𝑣𝛿(𝑥) of all adversarial examples contained in the 𝛿-neighborhood (inside the sphere of 

radius 𝛿 ∈ ℝ, where ℝ is the set of real numbers) of the input data sample 𝑥 ∈ ℝ𝑛 is defined 

as follows: 

𝐴𝑑𝑣𝛿(𝑥) = {𝑥′ | ‖ 𝑥 − 𝑥′‖ ≤ 𝛿   ⋀   𝑓(𝑥) ≠ 𝑓(𝑥′)}, 

where 𝑓(𝑥) is a function representing the machine-learned model that takes the input sample 

𝑥 and return the classification, and ‖𝑥 − 𝑥′‖ is the distance between two data samples 𝑥 and 

𝑥′. The 𝑝-norm is often used to define the distance. 

 

 

Figure 6.1 An adversarial example from an image of a panda, which is mis-classified into a gibbon 

 

Adversarial examples are explained by Figure 6.1. The left side in Figure 6.1 shows the input 

space to the neural network and the right side shows the output space from the neural network. 

The center of the red sphere in the input space represents an original input image of a panda, 

and the inside of the sphere, whose radius is 𝛿, (i.e., 𝛿-neighborhood of the original image) 
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represents the set of perturbated images obtained from the original image by adding noises 

whose sizes are less than 𝛿. The set of outputs from the neural network for all the input images 

in the 𝛿-neighborhood corresponds to the red region in the output space on the right. Here, a 

part (lower-right) of the red region in the output side is beyond the decision boundary and is 

mapped into the region of gibbons. It means misclassification, and the input images mapped to 

the lower-right part are adversarial examples. 

If there is no adversarial example in the 𝛿-neighborhood of the input data 𝑥 (i.e., inside the 

sphere whose radius is 𝛿 and center is 𝑥), then 𝛿 is said to be the safe radius of 𝑥. Then, the 

maximum safe radius of 𝑥, denoted by 𝑀𝑆𝑅(𝑥), is defined as follows: 

𝑀𝑆𝑅(𝑥) =  max {𝛿 | 𝐴𝑑𝑣𝛿(𝑥) = ∅}. 

When the maximum safe radius of 𝑥 is large, it is difficult to generate adversarial examples. 

Therefore, the maximum safe radius can be used as a measure of the robustness to input 

perturbations, including adversarial examples, of machine-learned models.  

The radius 𝛿 in Figure 6.1 is not a safe radius because some perturbated input images inside 

the 𝛿 -neighborhood are misclassified into gibbons. On the other hand, 𝛿  in the following 

Figure 6.2 is the maximum safe radius because all the input images inside the 𝛿-neighborhood 

in Figure 6.2 are correctly classified. 

 

 

Figure 6.2 The maximum safe radius 𝛿 

6.2 A survey on methods for evaluation and improvement of robustness 

Table 6.1 shows recent research papers on methods for evaluation and improvement of 

robustness, where each small box in the table represents a research paper with reference and 

the information on neural networks used in the experiments for evaluating the methods 

proposed in the paper. The information is useful for comparing applicable scales of the methods. 

Table 6.1 is categorized by the following perspectives: 

  



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology  
4th English edition  DigiARC-TR-2024-02 / CPSEC-TR-2024002 

54 

 

Table 6.1 Methods for evaluation and improvement of robustness (MSR: Maximum Safe Radius) 

  Evaluation of robustness Improvement of robustness 

C
ertified

 

R
igo

ro
u

s 

 

Rigorous estimation of MSR 

Katz et al. 2017 (Reluplex) [54] 

ACAS-XU-DNN, 300 ReLU nodes 

6 hidden layers, 

(Limitation: hundreds of nodes) 

 

  

Tjeng et al. 2019 [55] 

CIFAR-10, ResNet, 9-CNN, 2-layer, 

107,496 ReLU units, 

100~1,000 times faster than Reluplex 

 

A
p

p
roxim

ative 

D
eterm

in
istic 

Estimation of a lower bound (LB) of MSR 

Weng et al. 2018 (Fast-Lin) [56] 

CIFAR, 6-layer, 12,288 ReLU units 

About 10,000 times faster than Reluplex 

 

Boopathy et al. 2019 (CNN-Cert)[57]  

CIFAR-10 (32x32x3), 5-layer, 

10 filters, 29,360 hidden nodes, 

Faster than Fast-Lin 

  

Training by detecting all the adversarial exes 

Wong and Kolter 2018 [61] 

SVHN (32x32x3), 2-conv, 32-ch, 

100, 10 hidden units, ReLU, 

(Non-applicable to ImageNet) 

 

 

 

P
ro

b
ab

ilistic 

Estimation of a probabilistic LB of MSR 

Weng et al. 2019 (PROVEN) [58] 

CIFAR, 5-layer, CNN, ReLU 

almost same as CNN-Cert 

  

Randomized smoothing after training 

Lecuyer at el. 2019 [62] 

ImageNet (299x299x3), 

Inception-v3 + auto-encoder 

 

Cohen at el. 2019 [63] 

ImageNet (299x299x3),  

ResNet-50 (50-layer) 

Tighter certification than Lecuyer [62] 

  

U
n

certified
 

 

Estimation of an upper bound (UB) of MSR 

Carlini and Wagner 2017 [59] 

ImageNet (299x299x3), 

Inception-v3 

 

Estimation of an approximation of MSR 

Weng et al. 2018 (CLEVER) [60] 

ImageNet (299x299x3),  

ResNet-50 (50-layer) 

  

Training by detecting near adversarial exes 

Madry et al. 2018 [64] 

CIFAR (32x32x3),  

28-10 wide ResNet 
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– Columns in Table 6.1 (application): 

➢ Evaluation of robustness by estimating MSR 

➢ Improvement of robustness by increasing data samples with a specified MSR 

– Row in Table 6.1 (certification and strictness): 

➢ Certification of no existence of adversarial examples in 𝛿-neighborhood 

 Rigorous estimation of MSR 

 Approximative estimation of MSR 

⚫ Deterministic (no adversarial example exist) 

⚫ Probabilistic (the probability of no adversarial example is 𝜌%) 

➢ No certification of no existence of adversarial examples in 𝛿-neighborhood 

The methods in Table 6.1 are explained in the following Subsections 6.2.1~6.2.7. 

 Certified and rigorous evaluation of robustness 

Katz et al. [54] proposed a method, Reluplex, to verify that a machine-learned model satisfies 

given properties. A demonstration tool that implements the method Reluplex has also been 

released. Properties are constraints on input-output relations of machine-learned models, and 

Reluplex can exhaustively and rigorously (soundly and completely) verify that there is no 

adversarial example in the 𝛿-neighborhood of the input data sample. Therefore, the maximum 

safe radius (MSR) can be estimated by checking the existence of adversarial examples by 

changing the radius 𝛿  with binary search. Reluplex is an extended Simplex method (one of 

solvers for linear programming problems) with rules for the ReLU function and it is implemented 

by a satisfiability-checking tool (SMT-Solver) with a module for the theory of real numbers. 

Reluplex is a powerful tool to verify properties in addition to robustness, but the computational 

cost is expensive and the number of neurons it can verify is a few hundred ReLUs at most. 

Tjeng et al. [55] proposed an efficient method for estimating maximum safe radii. Then, they 

implemented the method on a mixed integer linear programming (MILP) solver and 

demonstrated that the tool can exactly estimate the maximum safe radii of a neural network with 

100,000 ReLU-type neurons. Although it is still difficult to apply the rigorous solver-based tools 

to practical large-scale machine-learned models, the scalability is being improved. 

 Certified, approximative, and deterministic evaluation of robustness 

Weng et al. [56] proposed a method, Fast-Lin, to approximate the maximum safe radii of 

ReLU-type neural network. Fast-Lin linearly approximates the output region with a polytope and 

estimates an approximation δ that is slightly smaller than the maximum safe radius, as shown in 

Figure 6.3. It is guaranteed that there is no adversarial example inside the 𝛿-neighborhood 

because the approximation δ does not exceed the maximum safe radius (i.e. sound). It means δ 

is a safe radius and is a lower bound of the maximum safe radius (𝛿 ≤  𝑀𝑆𝑅(𝑥)). It was reported 

that Fast-Lin is 10,000 times faster than the rigorous method Reluplex by approximative convex 
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outer polytopes.  

 

 

Figure 6.3 An approximation 𝛿 that is slightly smaller than the maximum safe radius (MSR) 

 

Boopathy et al. proposed CNN-Cert, which is an improved version of Fast-Lin [57]. CNN-Cert 

also supports convolutional networks including not only the activation function ReLU but also 

sigmoid, tanh, and arctan, and it improves approximation accuracy and is faster than Fast-Lin. 

 Certified, approximative, and probabilistic evaluation of robustness 

Weng et al. [58] proposed a method, PROVEN, to approximate probabilistic maximum safety 

radii. As shown in Figure 6.4, the probabilistic maximum safe radius 𝛿 with a probability 𝜌 

means that there is no adversarial example inside the 𝛿-neighborhood with a probability 𝜌. In 

other words, it permits the existence of adversarial examples with the probability (1 − 𝜌) . 

PROVEN has been developed based on CNN-Cert, and the computational complexity has not 

significantly increased from CNN-Cert. 

 

 

Figure 6.4 An approximation 𝛿 that is slightly smaller than the probabilistic MSR with 𝜌 
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 Uncertified evaluation of robustness 

Carlini and Wagner [59] proposed a method to detect the (almost) closest adversarial 

example to the input data sample 𝑥  and estimate the distance 𝛿  as an approximative 

maximum safety radius by using an existing optimization tool (Adam). However, it is not 

guaranteed that the distance 𝛿  estimated by the method is the shortest distance to the 

adversarial example, and there is a possibility that there are adversarial examples closer than 

the distance. In other words, it is an upper bound of the maximum safe radius (𝑀𝑆𝑅(𝑥) ≤ 𝛿). 

Although it is not guaranteed that the distance δ estimated by the method is a safe radius, it is 

often used for evaluation in recent papers on robustness as a measure of the maximum safe 

radius. 

Weng et al. [60] proposed the method CLEVER to estimate an approximate maximum safe 

radius as an evaluation measure of robustness independent of attack methods. It was reported 

that the method could be applied to relatively large neural networks and the image recognition 

model Inception-v3 was evaluated in about 10 seconds. The method estimates an approximative 

maximum safe radius based on the maximum effect in output caused by small changes in input, 

where the maximum effect is approximated by the extreme value theory. As shown in Figure 6.5, 

the estimated value 𝛿  can be larger than the maximum safe radius, and thus there is a 

possibility that adversarial examples exist inside the 𝛿-neighborhood (i.e., it is not guaranteed 

that 𝛿 is the safe radius). 

 

 

Figure 6.5 An approximation of the maximum safe radius (uncertified) 

 Certified, approximative, and deterministic improvement of robustness 

Wong et al. [61] proposed a method (robust training) to train such that the maximum safe 

radius of each data in the training dataset to be a specified value 𝛿. Although this method does 

not guarantee that the maximum safe radius δ is obtained for every training data sample after 

training, it also gives a method to estimate an approximative value (a safe radius) of the 

maximum safe radius for each input data sample. In the robust training, neural networks try to 

learn such that they correctly make inferences for not only training data samples but also the 𝛿-

neighborhood of every sample. 
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A sketch of the robust training is shown in Figure 6.6, where the black dotted line in the 

output space represents the decision boundary learned by a normal training, and the red solid 

line represents the decision boundary learned by the robust training. The six training data 

samples in the input space are correctly classified by both the boundaries, but some data in the 

𝛿-neighborhood of each sample are misclassified by the dotted boundary (normal training). On 

the other hand, data in the 𝛿 -neighborhood of each sample are also learned in the robust 

training as shown in the red boundary. The robust training can guarantee some safe radii, but it 

is difficult to apply the training to practical large scale neural networks due to the low scalability.  

Wong et al. [61] reports that the robust training was successfully applied to the datasets of 

images, MNIST (28 × 28) and SVHN (32 × 32) but was not applicable to ImageNet (256 × 256). 

 

 

Figure 6.6 Robust-trining by input data with 𝛿-neighberhood 

 Certified, approximative, and probabilistic improvement of robustness 

Lecuyer et al. [62] proposed a method to estimate maximum safe radii that can be 

probabilistically guaranteed by randomized smoothing. In the randomized smoothing, the 

inference for the same input is repeated in a neural network where a noise layer is added after 

training, and the final output is the average of the outputs obtained by the repeated inferences. 

A sketch of the randomized smoothing is shown in Figure 6.7, where the black dotted line in 

the output space represents the decision boundary without randomized smoothing, and the red 

solid line represents the decision boundary with randomized smoothing. The randomized 

smoothing of Lecuyer et al. [62] improves robustness by smoothing decision boundaries with 

certification of safe radii and has been successfully applied to guarantee the robustness of 

machine learned models for large-scale input data such as ImageNet (299 × 299 × 3). When the 

variance of the added noise is increased, the guaranteed safe radius also increases, but on the 

other hand, the correctness (e.g., accuracy) decreases. Lecuyer et al. [62] applied the technique 

of differential privacy, where the output for two similar inputs is made statistically 

indistinguishable, to clarify the relations between certifiable approximative probabilistic 

maximum safe radii, the standard deviation of noise, the number of inferences, and so on. 

Cohen et al. [63] proposed a randomized smoothing based method that can estimate tighter 

certifiable approximative probabilistic maximum safe radii than one of Lecuyer et al. [62]. 
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Although randomized smoothing needs repeated inferences (tens or hundreds of times 

experimentally) for an input, it can probabilistically guarantee robustness even for large-scale 

networks.   

 

 

Figure 6.7 Improvement of robustness by randamized smoothing 

 Uncertified improvement of robustness 

Madry et al. [64] proposed a method (adversarial training) to train such that maximum safe 

radius of each data in the training dataset to be a specified value 𝛿. In the adversarial training, 

samples to be potentially adversarial examples in 𝛿-neighborhood are detected during training 

and are also used as training data. Compared to the robust training of Wong et al. [61], the 

adversarial training cannot guarantee robustness, but it is more applicable to larger networks. 

In addition, compared to randomized smoothing, the adversarial training does not require 

repeated inferences.  

6.3 Conclusion 

In general, improvement of robustness tends to decrease accuracy, and currently accuracy is 

often more important. However, if robustness is not considered, accuracy may rapidly decrease 

even by small input perturbations. Therefore, robustness is important in critical systems. The 

methods related to the maximum safe radius, which is a measure of robustness, explained in this 

chapter have been proposed recently, and environments for applying such methods have not 

been established well yet. Since such methods have been experimentally applied also to practical 

machine learned models, we think that the maximum safe radius can be one of measures of 

robustness in a few years. 
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7 Estimation of Generalization Error Bounds 

In Machine Learning Quality Management (MLQM) Guideline [1] introduced in Chapter 1, 

the following two internal quality properties are described: 

– the correctness of trained models, that represents that trained models correctly behave 

for datasets (data samples), and 

– the stability of trained models, that represents that trained models reasonably behave 

even for unseen input data not included in datasets. 

Although widely used measures such as recall, precision, and accuracy based on testing datasets, 

are useful for evaluating the correctness of trained models, they are not sufficient for 

guaranteeing the stability of trained models, that requires stability even for unseen data. 

 

 

Figure 7.1  Inference by a neural classifier 𝑓𝑤  with weight-perturbations 

 

In this chapter, in order to statistically guarantee such stability with a confidence for any 

input, including unseen input, we explain how to estimate the upper bounds of weight-perturbed 

generalization errors of neural classifiers that are feed-forward neural networks trained for 

classification. The neural classifiers are henceforth referred to simply as “classifiers”. The weight-

perturbed generalization error represents the expected value of the misclassification-rate of the 

classifier when perturbations are added on weight-parameters between neurons during 

inference for any input, as shown in Figure 7.1. The weight-perturbed generalization errors are 

thought to be useful for evaluating stability because Jiang et al. [65] reported that such errors 

have high correlation with generalization performance. 

At first, weight-perturbed generalization errors are defined in Section 7.1, and formal 

expressions are presented for estimating their upper bounds in Section 7.2. Then, it is explained 

how to determine thresholds for worst weight-perturbations in Section 7.3, and it is 

demonstrated by experiments in Section 7.4. Finally, related works are introduced in Section 7.5, 

and it is concluded that weight-perturbed generalization errors are useful for evaluating stability 

of classifiers in Section 7.6. 

7.1 Weight-perturbed generalization error 

In this chapter, the following two types of weight-perturbations are used: 
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– random weight-perturbations, that are randomly selected from uniform distribution 

with specified range, and 

– worst weight-perturbations, that are selected towards misclassification within the 

range. 

Although even worst perturbations do not necessarily cause misclassification, perturbations 

really causing misclassification are called adversarial perturbations. 

Figure 7.2 shows examples of decision boundaries and output deviation areas of weight-

perturbed classifiers A and B. In the magnified part in Figure 7.2, the central dot represents the 

output of the classifier A without weight-perturbation and the small area around the dot 

represents the possible output deviation range when weight-perturbations within a specified 

range are added. The shaded area in the magnified part corresponds to the set of adversarial 

perturbations, that change the output to misclassification. In Figure 7.2, random perturbations 

(e.g., natural noise) can degrade the classifier A, but they little degrade classifier B because the 

areas of adversarial perturbations in the classifier B are very small. Nevertheless, it is possible 

to search rare adversarial perturbations even for the classifier B, and therefore it is important to 

check the existence (i.e., risk) of adversarial perturbations. The worst perturbations are useful 

for evaluating such risk. 

 

 

Figure 7.2  Decision boundaries and output deviation areas of weight-perturbed classifiers 

 

In this chapter, a neural classifier is modeled by a function 𝑓𝑤  that represents the relation 

between input 𝑥 and output 𝑦; thus 𝑦 = 𝑓𝑤(𝑥), where 𝑤 ∈ ℝ𝜔  represents the weights (i.e., 

training parameters) on connections between neurons in the neural network, and 𝜔  is the 

number of weights. The set 𝑈𝑤,𝛼  of weight-perturbations is defined such that the ratio of 

magnitude of a perturbation 𝑢𝑖  to the magnitude of each weight 𝑤𝑖  is bounded by a given 

constant 𝛼, as follows: 

𝑈𝑤,𝛼 ≔ { (𝑢1, … , 𝑢𝜔) ∈ ℝ𝜔 | ∀𝑖. |𝑢𝑖| ≤ 𝛼|𝑤𝑖| }. (7. 1) 

The perturbations in the set 𝑈𝑤,𝛼  are often called magnitude-aware perturbations [65]. The 

multivariate uniform-distribution for randomly selecting a perturbation from the set 𝑈𝑤,𝛼  is 

denoted by 𝒰𝑤,𝛼 , and therefore, if 𝑢~𝒰𝑤,𝛼 , then 𝑢𝑖~𝐔(−𝛼|𝑤𝑖|, 𝛼|𝑤𝑖| ) . Henceforth, if the 

subscripts 𝑤 and 𝛼 are clear from context, then 𝑈𝑤,𝛼  and 𝒰𝑤,𝛼  are simply denoted by 𝑈 

and 𝒰, respectively. 

Classifier A

$

Classifier BMagnification

Output deviation range by perturbations

Misclassification area

Decision boundary
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Then, for a pair (𝑥, 𝑦), for any weight-perturbation 𝑢 ∼ 𝒰, the expected value, called the 

weight-perturbed individual error, of misclassification rate is defined as follow: 

𝐫(𝑥,𝑦)
𝛼 (𝑓𝑤) ≔ 𝔼𝑢~𝒰[ℓ(𝑓𝑤+𝑢(𝑥), 𝑦)], (7. 2) 

where ℓ(𝑦, 𝑦′) is a loss function, and the following 0-1 loss function is used in this chapter: 

ℓ(𝑦, 𝑦′) ≔ 𝕀[𝑦 ≠ 𝑦′], (7. 3) 

where 𝕀[𝑏] is the following indicator function, and therefore, the loss function (7.3) above 

means that the loss is 1 if misclassified, and 0 otherwise. 

𝕀[𝑏] ∶=  if  𝑏  then  1  else  0 (7. 4) 

The weight-perturbed individual error corresponds to the ratio of the shaded area (i.e., 

misclassification) to the possible deviation area in the magnified part of Figure 7.2. 

Now, the randomly weight-perturbed generalization error 𝐑𝛼(𝑓𝑤) of the classifier 𝑓𝑤  is 

defined as the expected value of the weight-perturbed individual error 𝐫(𝑥,𝑦)
𝛼 (𝑓𝑤) for any pair 

(𝑥, 𝑦)~𝒟 as follows: 

𝐑𝛼(𝑓𝑤) ≔ 𝔼(𝑥,𝑦)~𝒟[𝐫(𝑥,𝑦)
𝛼 (𝑓𝑤)], (7. 5) 

where 𝒟 is the distribution of pairs (𝑥, 𝑦) of input 𝑥 and output (class) 𝑦.  

The randomly weight-perturbed generalization error hardly increases when the weight-

perturbed individual error is very small as shown in the classifier B in Figure 7.2. Therefore, for 

evaluating the risk where adversarial weight-perturbations exist more than a small threshold, 

the worst weight-perturbed generalization error 𝐖𝜃
𝛼(𝑓𝑤) of the classifier 𝑓𝑤  is defined as the 

expected value of 0/1-boolean value that is 1 if the weight-perturbed individual error 𝐫(𝑥,𝑦)
𝛼 (𝑓𝑤) 

is greater than the threshold 𝜃(𝑥,𝑦) and 0 otherwise for any pair (𝑥, 𝑦)~𝒟 as follows: 

𝐖𝜃
𝛼(𝑓𝑤) ≔ 𝔼(𝑥,𝑦)~𝒟 [𝕀[𝐫(𝑥,𝑦)

𝛼 (𝑓𝑤) > 𝜃(𝑥,𝑦)]] (7. 6) 

 

𝛩 ≔ 𝔼(𝑥,𝑦)~𝒟[𝜃(𝑥,𝑦)] (7. 7) 

where 𝜃(𝑥,𝑦) is the threshold that can depend on (𝑥, 𝑦), and 𝛩 is the expected value for 𝒟. 

The threshold means the accepted ratio of existence of adversarial perturbations. If “worst 

weight-perturbation” is exactly defined in 𝐖𝜃
𝛼(𝑓𝑤), then the threshold 𝜃(𝑥,𝑦) should be zero 

because it must be checked whether one or more adversarial weight-perturbations exist or not. 

However, it is reasonable to set the threshold to be appropriately small values because the zero-

threshold often too strong to apply to practical classifiers and it is often unrealistic from the 

perspective of computation cost. The appropriate thresholds are explained later in Section 7.3. 

7.2 Estimation of weight-perturbed generalization error bounds 

Although it is difficult in general to exactly compute weight-perturbed generalization errors 

because there can be infinitely many data pairs (𝑥, 𝑦) and perturbations 𝑢, there are various 
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existing works on the bounds of generalization errors. In this section, expressions for estimating 

randomly weight-perturbed generalization errors and worst weight-perturbed generalization 

errors are introduced. 

For randomly weight-perturbed generalization errors, there are many existing works. For 

example, by the combination of the Maurer bounds (Theorem 5 in [67]) and the Sample 

Convergence bounds (Theorem 2.5 in [68]), the following inequality (7.8)  holds with 

probability (i.e., confidence) at least (1 − 𝛿) for any 𝛿 ∈ (0, 1) [69]:  

𝐑𝛼(𝑓𝑤) ≤ 𝐑̅𝑇,𝑉,𝛿0 ,𝛿
𝛼 (𝑓𝑤), (7. 8) 

where 𝑇~𝒟𝑛  is a testing dataset (size 𝑛) that is not used for training, 𝑉~𝒰𝑚 is a set (size 𝑚) 

of samples of random weight-perturbations, the uncertainty 𝛿0 ∈ (0, 𝛿)  is the acceptable 

degradation of confidence caused by using the perturbation samples instead of any perturbation, 

and the right-hand side 𝐑̅ 𝑇,𝑉,𝛿0 ,𝛿
𝛼 (𝑓𝑤) is defined by 

  𝐑̅𝑇,𝑉,𝛿0,𝛿
𝛼 (𝑓𝑤) ≔ 𝑘𝑙−1 (𝐑̅̅𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤),
1

 𝑛 
ln (

2√𝑛

𝛿 − 𝛿0
)), (7. 9) 

where 𝐑̅̅𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) is an upper bound of the weight-perturbed testing error 𝐑̂̂𝑇,𝑉
𝛼 (𝑓𝑤) by the 

testing dataset 𝑇 and perturbation samples 𝑉, and they are defined by 

𝐑̅̅𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) ≔ 𝑘𝑙−1 (𝐑̂̂𝑇,𝑉
𝛼 (𝑓𝑤),

1

 𝑚 
ln (

2

𝛿0
)), (7. 10) 

 

𝐑̂̂𝑇,𝑉
𝛼 (𝑓𝑤) ≔

1

 𝑛𝑚 
∑ ∑ ℓ(𝑓𝑤+𝑢(𝑥), 𝑦)

(𝑥,𝑦)∈𝑇𝑢∈𝑉

, (7. 11) 

where 𝑘𝑙−1(𝑞, 𝑏) is defined by 

𝑘𝑙−1(𝑞, 𝑏) ≔ sup{ 𝑝 ∈ [𝑞, 1] | 𝑘𝑙(𝑞 ∥ 𝑝) ≤ 𝑏 }, (7. 12) 

and 𝑘𝑙(𝑞 ∥ 𝑝) is the binary Kullback-Leibler divergence, and is defined as follows: 

𝑘𝑙(𝑞 ∥ 𝑝) ≔ 𝑞 ln (
𝑞

 𝑝 
) + (1 − 𝑞) ln (

1 − 𝑞

 1 − 𝑝 
). (7. 13) 

On the other hand, for the worst weight-perturbed generalization errors, there are some (not 

many) existing works on estimating them. For example, the following inequality (7.14) holds 

with probability (i.e., confidence) at least (1 − 𝛿) for any 𝛿 ∈ (0, 1) [70]:  

𝐖𝜃
𝛼(𝑓𝑤) ≤ 𝐖̅𝜃,𝑇,𝑉,𝛿0 ,𝛿

𝛼 (𝑓𝑤), (7. 14) 

where the parameters 𝑇~𝒟𝑛 , 𝑉~𝒰𝑚, and 𝛿0 ∈ (0, 𝛿) are the same as the parameters in (7.8), 

and the right-hand side 𝐖̅𝜃,𝑇,𝑉,𝛿0 ,𝛿
𝛼 (𝑓𝑤) is defined by 

𝐖̅𝜃,𝑇,𝑉,𝛿0 ,𝛿
𝛼 (𝑓𝑤) ≔ 𝑘𝑙−1 (𝐖̅̅𝜃,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤),
1

 𝑛 
ln (

2

𝛿 − 𝛿0
)), (7. 15) 

where 𝐖̅̅𝜃,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) is an upper bound of the ratio of the size of a risky dataset to the size of the 
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testing dataset, and it is defined from an upper bound 𝐫̅(𝑥,𝑦),𝑉,𝛿1

𝛼 (𝑓𝑤) of the weight-perturbed 

individual error as follows: 

𝐖̅̅𝜃,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) ≔
1

 𝑛 
∑ [1 [𝐫̅

(𝑥,𝑦),𝑉,
𝛿0
𝑛

𝛼 (𝑓𝑤) > 𝜃(𝑥,𝑦)]]
(𝑥,𝑦)∈𝑇

, (7. 16) 

 

𝐫̅(𝑥,𝑦),𝑉,𝛿1

𝛼 (𝑓𝑤) ≔ 𝑘𝑙−1 (𝐫̂(𝑥,𝑦),𝑉
𝛼 (𝑓𝑤),

1

 𝑚 
ln (

2

𝛿1
)), (7. 17) 

 

𝐫̂(𝑥,𝑦),𝑉
𝛼 (𝑓𝑤) ≔

1

 𝑚 
∑ ℓ(𝑓𝑤+𝑢(𝑥), 𝑦)

𝑢∈𝑉

. (7. 18) 

The expected value 𝛩 of the threshold 𝜃 is explained in the next Section 7.3. 

7.3 Thresholds for worst weight-perturbations 

The randomly weight-perturbed generalization error bound 𝐑̅𝑇,𝑉,𝛿0 ,𝛿
𝛼 (𝑓𝑤) can be estimated 

by measuring the average 𝐑̂̂𝑇,𝑉
𝛼 (𝑓𝑤) of misclassification rates of the classifier 𝑓𝑤  for the testing 

dataset 𝑇 and perturbation samples 𝑉. On the other hand, for estimating the worst weight-

perturbed generalization error bound 𝐖̅𝜃,𝑇,𝑉,𝛿0,𝛿
𝛼 (𝑓𝑤) , it is important how to determine the 

threshold 𝜃, and there are two practical and reasonable approaches for deciding the threshold. 

One of them, called fixed threshold, is explained Subsection 7.3.1, and the other one, called 

adaptive threshold, is explained in Subsection 7.3.2. 

 Fixed threshold 

Let 𝑉~𝒰𝑚 be a set of weight-perturbation samples and 𝑇~𝒟𝑛  be a testing dataset. Then, 𝑇 

is partitioned to the risky dataset 𝑇1 and the rest set 𝑇0 = 𝑇 − 𝑇1, where 𝑇1 is defined by 

𝑇1 ≔ {(𝑥, 𝑦) ∈ 𝑇  |  ∃𝑢 ∈ 𝑉.  𝑓𝑤+𝑢(𝑥) ≠ 𝑦}. (7. 19) 

In this case, the testing error bound 𝐖̅̅𝜃,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) defined in the expression (7.16) can be 

simply estimated by 

𝐖̅̅
𝜃𝑚,𝑛,𝛿0

𝑓𝑖𝑥
,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) =
 𝑛1 

𝑛
 , (7. 20) 

where 𝑛1 is the size of 𝑇1, and 𝜃𝑚,𝑛,𝛿0

𝑓𝑖𝑥  is called the fixed threshold and is defined by 

𝜃𝑚,𝑛,𝛿0

𝑓𝑖𝑥
≔ 1 − (

𝛿0

 2𝑛 
)

1
𝑚

 . (7. 21) 

Therefore, it is sufficient for the fixed threshold to count the number of risky data samples where 

one or more adversarial weight-perturbations exists in the set 𝑉 of samples. In this case, the 

expected threshold 𝛩 is equal to 𝜃𝑚,𝑛,𝛿0

𝑓𝑖𝑥  because it is independent from individual data. 

If a fixed threshold 𝜃0  is specified, the size 𝑚  of weight-perturbation samples can be 
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determined to satisfy the following condition that is obtained by transforming the expression 

(7.21): 

𝑚 ≥
ln(𝛿0 / (2𝑛))

ln(1 − 𝜃0)
 . (7. 22) 

For example, if 𝑛 = 5000, 𝛿0 = 0.05, and 𝜃0 = 0.01 (i.e., the fixed threshold 1%), then the 

required size of weight-perturbation sample is 1215 . Higher robustness requires a smaller 

threshold, but it means to require more samples (i.e., more computation cost). It will be 

necessary to set a practically reasonable threshold. 

 Adaptive threshold 

In the case that the ratios of adversarial weight-perturbations are very small as shown in the 

classifier B in Figure 7.2, the possibility that adversarial weight-perturbations are contained in 

the set of randomly selected samples is very low. For effectively finding such adversarial weight-

perturbations, it is useful to search them based on gradients of loss functions (e.g., Algorithm 3 

in [65]), although such search cannot guarantee that there is no adversarial weight-

perturbations even if it cannot find them. Therefore, both of random samples and such search 

are used in [70], where gradient-based search is applied to the dataset 𝑇0 that is the subset of 

the testing dataset 𝑇 explained in Subsection 7.3.1. Then, the dataset 𝑇0 is partitioned to the 

risky dataset 𝑇01 and the rest set 𝑇00 = 𝑇0 − 𝑇01, where 𝑇01 is the dataset, for which one or 

more adversarial weight-perturbations are found by the search (not found by the random 

samples). In this case, the testing error bound 𝐖̅̅𝜃,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) defined in the expression (7.16) 

is simply estimated by 

𝐖̅̅
𝜃𝑚,𝑛00,𝛿0

𝑎𝑑𝑎 ,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) =
𝑛01 + 𝑛1

𝑛
 , (7. 23) 

where 𝑛00 , 𝑛01 , and 𝑛1  are the sizes of 𝑇00 , 𝑇01  and 𝑇1 , respectively, and 𝜃𝑚,𝑛00 ,𝛿0 ,(𝑥,𝑦)
𝑎𝑑𝑎  is 

called the adaptive threshold and is defined by 

𝜃𝑚,𝑛00,𝛿0 ,(𝑥,𝑦)
𝑎𝑑𝑎 ≔ {

0                 if (𝑥, 𝑦) ∈ 𝑇01 ∪ 𝑇1

𝜃𝑚,𝑛00,𝛿0

𝑓𝑖𝑥    if (𝑥, 𝑦) ∈ 𝑇00         
  . (7. 24) 

The expected threshold 𝛩 of the adaptive threshold can be bound by 𝛩̅ defined by 

𝛩̅ =
𝑛̅00

𝑛
𝜃𝑚,𝑛̅00,𝛿0

𝑓𝑖𝑥 , (7. 25) 

where (𝑛̅00/𝑛) is the upper bound of (𝑛00/𝑛) and can be estimated by 

𝑛̅00 ≔ 𝑛 × 𝑘𝑙−1 (
 𝑛00 

𝑛
,
1

𝑛
ln (

2

 𝛿 
)) . (7. 26) 

7.4 Estimation experiments of weight-perturbed generalization error bounds 

In this section, it is reported that experiments and the results for estimating weight-perturbed 
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generalization error bounds by applying expressions (7.9) and (7.15) explained Section 7.3. 

In the experiments, we estimated the weight-perturbed generalization error bounds of 8 

classifiers, named CNN#1~8, that are trained convolutional neural networks by the dataset 

MNIST (pixels: 28 × 28, grayscale: [0,1]) of handwritten digit images with the training hyper-

parameters shown in Table 7.1. The size 𝑛 of testing dataset 𝑇 is 5000, the size 𝑚 of the set 

𝑉  of random weight-perturbation samples is 1215 , the uncertainty 𝛿  (i.e., the acceptable 

degradation of confidence) for generalization error bounds is 0.1 (10%), and the uncertainty 

𝛿0  caused by random weight-perturbation samples is 0.05  (5%). Here, the size 1215  of 

perturbation samples is determined for making the fixed threshold 1%, as explained Subsection 

7.3.1. For the adaptive threshold, an I-FGSM (iterative fast gradient sign method) like algorithm 

is used for searching for adversarial weight-perturbations in vertexes of the possible 

perturbation area (the hyper-rectangular). Perturbations are added to the weights and the 

biases (the total number is 121930) in the CNNs, but they are not added to training parameters 

(scale 𝛾 and shift 𝛽) of the batch normalization. 

 
Table 7.1  The training hyper-parameters for the 8 classifiers CNN#1~8 

 
 

 

 
Figure 7.3  The estimation results of randomly/worst perturbed generalization bounds of CNN#4  

 

Figure 7.3 shows the estimation results (confidence 90%) of randomly weight-perturbed 

generalization error bounds and worst weight-perturbed generalization error bounds for the 
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fixed threshold and the adaptive threshold of CNN#4. The horizontal axis represents the ratio 𝛼 

of weight-perturbations to weights. The errors start to increase at 𝛼 = 0.01 , 0.1, and 1, for 

worst weight-perturbations with the adaptive threshold, worst weight-perturbations with the 

fixed threshold, and random weight-perturbations, respectively. Figure 7.3 also shows the 

bounds of the expected values of thresholds, and the adaptive threshold decreases while the 

generalization error (i.e., the number of found adversarial perturbations) increases. 

 

 

Figure 7.4  The estimation results of randomly perturbed generalization error bounds 

 

 

Figure 7.5  The estimation results of worst perturbed generalization error bounds (adaptive) 

 

Figure 7.4 and Figure 7.5 show the estimation results of randomly and worst weight-

perturbed generalization error bounds with the adaptive threshold, respectively. It is noted that 

the classifiers have different tendencies for random perturbations and worst perturbations. For 
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example, the classifier CNN#3 is clearly less robust (faster increasing the error) for random 

perturbations than CNN#4, while there is little difference between CNN#3 and CNN4 for worst 

perturbations. 

For the cases of 𝛼 = 0.3 in Figure 7.4 and 𝛼 = 0.003 in Figure 7.5, the generalization gap 

Δ𝐺  (the difference between the generalization bound and the perturbed testing error), the 

perturbation gap Δ𝑃  (the difference between the perturbed testing error and testing error), 

and the testing error 𝑇𝐸  for each classifier are shown in Figure 7.6 and Figure 7.7. The 

generalization gaps are about 1~2%, and therefore, tight bounds are estimated. Even when 

there are only slight differences between the testing errors 𝑇𝐸, there are often clear differences 

between perturbed testing errors (𝑇𝐸 + Δ𝑃). 

 

 

Figure 7.6  The generalization gaps Δ𝐺  and the random-perturbation gaps Δ𝑃 

 

 

Figure 7.7  The generalization gaps Δ𝐺  and the worst-perturbation gap Δ𝑃 

 

The program, named WP-GEB-Estimator, used in the experiments in this section has been 

published from the website [71]. The "WP-GEB" in the tool name stands for Weight-Perturbed 

Generalization Error Bounds. 

7.5 Related work 

Although we have introduced theorems that guarantee generalization error bounds based on 
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testing errors (i.e., by using testing datasets) in this chapter, there are many theorems, e.g., PAC 

Bayesian theorems [67][73], based on training errors (i.e., by using training datasets). The 

advantage of generalization error bounds based on training errors is that they can be applied to 

the theoretical study of training (algorithms) for reducing generalization errors. The other 

advantage is that they can be estimated only by training datasets without additional datasets 

such as testing datasets. However, it was reported [74] that the estimation results of the 

generalization error bounds based on training errors are often near 100% (i.e., vacuous). 

Recently, several methods were proposed for estimating non-vacuous generalization error 

bounds (less than 100%) even based on training errors. For example, such methods use 

distributions of classifiers (i.e., input-output functions instead of weights) in the PAC-Bayes 

bounds [74], or random labelled data in training [75], or model compression [76]. But it is not 

easy to practically reduce the generalization error bounds based on training errors. On the other 

hand, although the generalization error bounds based on testing errors needs testing datasets, 

they can estimate bounds close to generalization errors. For example, the generalization gaps 

Δ𝐺  are less than 2%  in Figure 7.6 and Figure 7.7. In this chapter, we have focused the 

generalization error bounds based on testing errors from the perspective of practical evaluation 

of classifiers. 

 

         

(a) Based on Theorem 2 in Tsai et al. [77]       (b) Based on the expression (7.23) 

Figure 7.8  The estimation results of worst weight-perturbed testing errors 

 

There are some existing works on estimating worst weight-perturbed generalization errors. 

For example, Tsai et al. [77] theoretically analyzed worst weight-perturbed feed-forward neural 

networks, and presented the formal expressions of pairwise class margin by accumulating 

maximum errors in each layer (Theorem 2 in [77]). The worst weight-perturbed generalization 

error bounds can be estimated based on the pairwise class margin with confidence 100%. For 

example, Figure 7.8 shows the estimation results of the worst weight-perturbed testing errors 

of 3 classifiers, that are trained small 3-layer feed-forward neural networks by MNIST with 

different regularizations ( 𝐿2 -regularization: 0 , 0.0001 , and 0.0002 ), and Figure 7.8 (a) is 

estimated based on Theorem 2 in [77] and (b) is estimated based on the expression (7.23) in 

this chapter. The estimation based on Theorem 2 in Tsai et al. corresponds the case of the fixed 
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threshold 0% with the confidence 100% . Consequently, Figure 7.8 (a) shows larger testing 

error bounds than Figure 7.8 (b) that is estimated by the adaptive threshold less than 1% with 

confidence 95% at least. Although the perturbation-scale is difference between Figure 7.8 (a) 

and (b), they show similar tendencies about robustness for worst weight-perturbations. The 

estimation method based on Theorem 2 in [77] is sophisticated, but it should be noted that it 

strongly depends on the architectures of neural networks. 

7.6 Towards the evaluation of “the stability of trained models” 

The stability of trained models is one of the 14 internal quality properties described in 

Machine Learning Quality Management Guideline [1] and it represents that machine-learned 

components reasonably behave even for unseen input data. In this chapter, we have focused on 

the randomly/worst weight-perturbed generalization errors based on testing errors, have 

explained how to estimate them, and have demonstrated the usefulness by experiments. It is 

expected that such generalization error bounds will be useful for evaluating “the stability of 

trained models” by the following reasons: 

(1) Why are perturbed generalization error bounds estimated? 

As shown in the experiment results (e.g., see Figure 7.4 and Figure 7.5) in Section 7.4, 

the potential differences of performance can be clearly observed by adding weight-

perturbations. In fact, it has been reported [65][66] that there are high correlations 

between the generalization performance and the robustness for (especially worst) 

weight-perturbations. The both of random weight-perturbations and worst weight-

perturbations are useful for evaluating classifiers because they often show different 

tendencies.  

(2) Why are perturbations added to weights instead of inputs? 

Although perturbations are often added to inputs (mainly images), it is difficult to 

apply them to unsorted inputs (e.g., city-names in tabular data). Weight-perturbations 

can be applicable to neural-classifiers for any type of inputs. 

(3) Why are generalization error bounds estimated? 

Instead of weight-perturbed generalization error bounds, weight-perturbed testing 

errors (𝑇𝐸 + Δ𝑃 in Figure 7.6 and Figure 7.7) seem to be sufficient for evaluating the 

classifiers. However, such testing errors cannot guarantee behaviors for unseen data 

not included in samples. The weight-perturbed generalization error bounds can 

guarantee that the expected value of misclassification is less than a constant with 

probability (i.e., confidence) for any input selected from a distribution, and they can be 

easily estimated from the weight-perturbed testing errors. 

(4) Why are generalization error bounds based on testing errors used? 

Although most of recent research papers on generalization error bounds are based on 

training errors, the estimation results of such bounds are often vacuous as explained 

in Section 7.5. Currently, it is thought to be practical for evaluating realistic classifiers 
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to apply generalization error bounds based on testing errors. 

When providing trained classifiers to third parties, it will be helpful for the users to include 

the estimation results such as Figure 7.4 and Figure 7.5 of the randomly/worst weight-perturbed 

generalization error bounds in the performance specifications of the classifiers because they can 

statistically guarantee the upper bounds of misclassifications with probability. 
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8 Adversarial Example Detection 

8.1 Research summary 

With the goal of practically establishing a method for determining whether a given input 

image is an adversarial example, we focus on the following points regarding attacks and 

detection methods that generate adversarial examples. We are conducting a survey of typical 

technologies. 

– Supporting adversarial example detection program code and confirmation by 

computational experiment 

– Reproduction of experimental results of adversarial example detection method papers 

– Implementation of the framework for detecting adversarial examples 

Adversarial example detection stands for detecting adversarial examples from given inputs, 

and existing state-of-the-art adversarial example detection methods can be divided into four 

main categories. 

① Metric based approaches (example [78]) 

② Denoisers approaches (example [79]) 

③ Prediction inconsistency based approaches (example [80]) 

④ Neural Network Invariant Checking (NIC) approaches (example [81]) 

In this chapter, we report the results of additional test experiments to compare and evaluate 

adversarial example detection methods based on each of these approaches ① to ④. As reported 

in the paper [81], it was confirmed that the approach of ④ (NIC: Neural Network Invariant 

Checking) shows the highest detection rate among ① to ④. In this follow-up experiment, the 

published implementation code was used for ① to ③, but the implementation code was not 

published for ④, so a computer experiment was conducted by implementing the NIC according 

to the paper [81]. Therefore, this chapter mainly describes the NIC ④. 

After explaining the outline of the four approaches, the method of detecting adversarial 

examples by the NIC is explained, and the implementation method is described. Then, the results 

of the follow-up experiments of each approach and the experiments by the NIC are described. 

Finally, we report the implementation of the NIC framework and the effectiveness evaluation. 

8.2 Overview of adversarial example detection approaches 

In this section, the four state-of-the-art approaches to adversarial example detection are 

overviewed. 
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 Metric based approaches 

A method of performing statistical measurements of inputs (and outputs of each neuron) to 

detect adversarial examples, Ma et al. recently proposed the use of a measurement called Local 

Intrinsic Dimensionality (LID) [78]. This method estimates the LID value that evaluates the 

space-filling capacity of the area surrounding the sample by calculating the distance distribution 

of the sample and the number of neighbors in each layer, and the adversarial example tends to 

have a large LID value. It uses certain properties to detect adversarial examples. LID is superior 

to traditional kernel density estimation (KD) and Bayesian uncertainty (BU) for detecting 

adversarial examples and is currently the state-of-the-art technology for this type of detector. 

 Denoisers approaches 

It is a method of detecting adversarial examples by removing noise in a preprocessing step 

for each input. In this method, the training model or noise remover (encoder and decoder) is 

trained to filter the image so that the key components in the training model can be highlighted. 

This filter can be used to remove noise added by an attacker to generate adversarial examples 

and correct misclassification. MagNet [79] is a method of detecting adversarial examples using 

detectors and reformers (trained automatic encoders and automatic decoders). 

 Prediction inconsistency based approach 

A method of detecting adversarial examples by measuring the discrepancy between the 

original neural network and the neural network enhanced by human perceptible attributes. 

Feature Squeezing [80], the state-of-the-art detection technique of this method, can achieve very 

high detection rates against a variety of attacks. Feature squeezing focuses on detecting gradient-

based attacks, focusing on the ability of attackers to generate adversarial examples through the 

unnecessarily large input feature space of deep neural networks DNN. The procedure for 

detecting adversarial examples by feature squeezing is shown below. 

1. Apply squeezing technology (a technology that reduces the color depth of an image and 

smooths the image) to the original input image to generate multiple squeezed images. 

2. Input the original input image and multiple squeeze images into the deep neural 

network, and measure the distance between the inference result (prediction vector) of 

the input image and the inference result of each squeeze image. 

3. When one of the differences (distances) between the original input image and the 

squeeze image exceeds the threshold value, the original input image is detected as an 

adversarial example. 



Technical Report on Machine Learning   National Institute of 
Quality Evaluation and Improvement  Advanced Industrial Science and Technology  
4th English edition  DigiARC-TR-2024-02 / CPSEC-TR-2024002 

74 

 

 Neural Network Invariant Checking (NIC) approaches 

The NIC (Neural Network Invariant Checking) method focuses on value invariants (VIs) and 

provenance invariants (PIs) inside deep neural networks [81]. The value invariant VI is the 

distribution of possible neuron values in each layer, and the provenance invariant PI is the 

possible neuron value pattern of two consecutive layers (summary of correlation between 

features across two layers). If an input violates these invariants, the input is detected as an 

adversarial example. The NIC [81] method trains these invariant VIs and PIs with benign input 

data and model them as a one-class classification (OCC) problem that detects adversarial 

examples. A higher detection rate has been reported than the methods based on (1) to (3) 

explained above. The outline and the implementation of the NIC system design are explained in 

detail in Sections 8.3 and 8.4, respectively. 

8.3 NIC system design overview 

The procedure for building the NIC detector (steps A to C: during training, D to E: during 

execution) is explained by using Figure 8.1 [81]. This invariant VI, PI training uses only non-

adversarial benign data. 

 

Figure 8.1 Outline of system design (Fig. 8 of thesis [81]) 

– Step A: Collect the output value of each neuron at each layer of each training data input. 

 

– Step B: For each layer 𝑘 (e.g., L1, L2), extract the sub-models from the input layer to 

the 𝑘 layer and add a new softmax layer with the same output label as the original 

model. Then create a derived model (DerivedModel in Figure 8.1) 
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– Step C: Enter each benign training data for all derived models and collect the final 

output of these models (i.e., the output probability values of the individual classes). For 

each set of consecutive layers, we train using the distribution of the classification 

results of this derivative model. This trained distribution is the PI for these two layers. 

 

– Step D: Input each test data 𝑡  (for example, the image of “4” in Figure 8.1) to all 

derivative models in addition to the original model, and observe the activation value of 

each layer of the original model. Collect the value OV (for example, OV(L1, 𝑡) in Figure 

8.1) and the classification result (set) of the derivative model of consecutive layers. 

From this classification result, the observed source OP (for example, OP(L1, L2, 𝑡), etc.) 

is obtained. 

 

– Step E: Calculate the probability D that the OV and OP fit the corresponding VI and PI 

distributions. The possibility that the input 𝑡 is adversarial is predicted at the same 

time by aggregating all these D values. 

8.4 NIC system implementation 

In order to detect adversarial examples based on NIC, a direct sum space (vector) is 

constructed from PI and VI, and for classifying this vector, an OSVM (One Class Support Vector 

Machine) is constructed. When the input to the layer 𝑙  of the trained DNN (Deep Neural 

Network) model (hereinafter referred to as M) is 𝑥𝑙 , the output 𝑓𝑙  of the layer 𝑙 is given by 

the following equation: 

𝑓𝑙 = 𝜎(𝑥𝑙 ∙ 𝑤𝑙
𝑇 + 𝑏𝑙), 

where 𝜎 is the activation function of the layer 𝑙, 𝑤𝑙
𝑇  is the weight matrix, and 𝑏𝑙 is the bias. 

At this time, the direct sum spaces classified by VI, PI, and OSVM are obtained as follows. 

– VI calculation: The VI of each layer 𝑙 of model M is determined by solving the following 

optimization problem. 

𝑉𝐼𝑙 = min [ ∑ 𝐽(𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓1(𝑥) ⋯ 𝑤𝑇 − 1)

𝑥∈𝑋𝑏

] 

Here, 𝐽 is the error evaluation function, and 𝑋𝑏  is the batch used to create M. Also, ∘ 

is a monoid, in this case a vectorized version of 𝑓𝑘 . 

 

– PI calculation: 𝑃𝐼𝑙,𝑙+1(𝑥) is based on the classification output of the derived models of 

the layers 𝑙  and 𝑙 + 1 . The probability that 𝑥  is benign (non-adversarial) is 

estimated by solving the following optimization problem. 

𝑃𝐼𝑙,𝑙+1(𝑥) = min [ ∑ 𝐽(𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝑙(𝑥), 𝐷𝑙+1(𝑥)) ⋯ 𝑤𝑇 − 1)

𝑥∈𝑋𝑏

] 
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Here, a derivative model 𝐷𝑙  of the layer 𝑙 is defined as follows, with the softmax layer 

added after the layer 𝑙. 

𝐷𝑙 = softmax ∘  𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓1 

 

– Direct sum space of PI and VI: From the VI and PI obtained by the above optimization, 

the following direct sum space (vector) is created for each batch of training data of 

model M.  

𝑉𝐼1 ⨁ 𝑃𝐼1,2 ⨁ 𝑉𝐼2 ⨁ 𝑃𝐼2,3 ⋯ 𝑉𝐼𝐵  ⨁ 𝑃𝐼𝐵−1,𝐵  ⨁ 𝑉𝐼𝐵 

This vector is 𝐿 × 3 dimensions (𝐿 is the number of layers of M), which is the vector 

space (direct sum space) of the number 𝐵. The NIC performs OSVM on this space. 

8.5 Computer experiment 

In order to confirm the effect of adversarial example detection technology (NIC), the 

experiment of the paper [81] was retested in the following experimental environment. 

– Hardware environment: AIST ABCI [82] 

– Datasets: Two common image datasets, MNIST [83] and CIFAR-10 [84], were used for 

image classification experiments. MNIST is a grayscale image dataset used for 

handwritten digit recognition, and CIFAR-10 is a color image dataset used for object 

recognition. For NIC, we also conducted an experiment on LFW (face image) [85]. 

– Attacks: Non-targeted attacks (FGSM 𝐿2 ,𝐿∞ ), targeted attacks JSMA, and gradient-

based attacks (CW 𝐿2) were used to generate adversarial examples. The Cleverhans 

library [86] was used to implement FGSM and JSMA 

First, in order to evaluate the adversarial example detection method based on each of the 

approaches ① to ③, the published implementation code of LID [78], MagNet [79], and feature 

squeezing [80] was used to evaluate each paper. Then, follow-up experiments were conducted. 

As the result, the detection rates reported in each paper were able to be confirmed, and among 

these three, feature squeezing showed the highest detection rate. 

Next, in order to evaluate the adversarial example detection method based on the approach 

④, an experiment was conducted using the NIC code implemented in Section 8.4. Table 8.1 to 

Table 8.3 show the results of adversarial example detection and computational experiments on 

the MNIST, CIFAR-10, and LFW datasets, respectively. Here, the correct answer rate is the rate at 

which adversarial examples are input to the classifier (OSVM) described in Section 7.4 and are 

determined to be adversarial examples. The CNN model used in the experiment is LeNet5, and 

the OSVM Kernel is RBF (MNIST: γ = 0.1 to 0.27, CIFAR-10: γ = 0.11 to 0.2, LFW: γ = 0.005 to 

0.90). In the results of this experiment, high detection performance was confirmed not only for 

the dataset and attack method reported in the paper [81], but also for the unreported dataset 

LFW and attack method (FGSM 𝐿∞). 
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Table 8.1 Adversarial example detection computational experiment results for MNIST dataset 

Data Set Attack Invariant Performance Number  

of data 

Performance reported 

in the paper [81] 

MNIST FGSM 𝐿2 VI 97% 2800 100% 

PI 98% 84% 

NIC 97% 100% 

FGSM 𝐿∞    VI 98% 2800 ― 

PI 98% ― 

NIC 98% ― 

JSMA VI 100% 280 83% 

PI 100% 100% 

NIC 100% 100% 

CW2 VI 100% 280 95% 

PI 100% 96% 

NIC 100% 100% 

Trojan VI 100% 3200 100% 

PI 100% 100% 

NIC 100% 100% 

 

Table 8.2 Adversarial example detection computational experimental results for CIFAR-10 dataset  

Data Set Attack Invariant Performance Number 

of data 

Performance reported 

in the paper [81] 

CIFAR-10 FGSM 𝐿2 VI 99% 6400 100% 

PI 99% 52% 

NIC 99% 100% 

FGSM 𝐿∞    VI 100% 6400 ― 

PI 100% ― 

NIC 100% ― 

JSMA VI 97% 320 62% 

PI 95% 100% 

NIC 96% 100% 

CW2 VI 98% 320 88% 

PI 95% 89% 

NIC 96% 100% 

Trojan VI 100% 3200 100% 

PI 100% 100% 

NIC 100% 100% 
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Table 8.3 Adversarial example detection computational experiment results for LFW dataset 

Data Set Attack Invariant Performance Number  

of data 

Performance reported 

in the paper [81] 

LFW FGSM 𝐿2 VI 98% 28222 

 
― 

PI 98% ― 

NIC 98% ― 

FGSM 𝐿∞    VI 100% 2822 

 
― 

PI 100% ― 

NIC 100% ― 

JSMA VI 100% 280 

 
― 

PI 100% ― 

NIC 100% ― 

CW2 VI 100% 840 

 
― 

PI 100% ― 

NIC 100% ― 

Trojan VI 100% 3200 ― 

PI 100% ― 

NIC 100% ― 

 

8.6 Implementation of the NIC framework 

We have implemented a simplified NIC method based on Sections 8.3 and 8.4 in order to 

conduct the computer experiments for confirming the effectiveness of NIC in Section 8.5. In the 

simplified implementation, we have found some implementation issues in the original paper 

[81]. In this section, while clarifying the issues, we reconsider the algorithm in order to construct 

the NIC framework for high detection rates of adversarial examples on the testbed, that is used 

for creating an environment (attack, defense and detection) to benchmark vulnerability to 

adversarial examples. 

 Overview of the NIC framework 

The NIC framework consists of five parts: taking output from each layer; calculating VI and PI 

for normal data; calculating VI, PI and NIC for adversarial examples; evaluating OSVM and 

displaying results. The use case of the NIC framework is shown in Figure 8.2. In addition, the 

process steps for detecting adversarial examples are shown in Figure 8.3. 
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Figure 8.2 NIC framework use cases 

 

 
Figure 8.3 Processing procedures for adversarial example detection by the NIC framework 

 

As shown in Figure 8.3, the overall processing procedure for adversarial example detection 

by the NIC framework consists of five parts. The function of each part (input, processing and 

output) is shown in Table 8.4. 

 Output of OSVM evaluation results 

The NIC framework has been implemented using scikit-learn, that is a Python machine 

learning library. For example, the scikit-learn's OneClassSVM class is used for implementing the 

final part of the OSVM as shown in Figure 8.3 as follows. 

class sklearn.svm.OneClassSVM(array, kernel='rbf', gamma='auto', nu=0.3) 

Here, the meaning of each argument is as follows. 

・ array: parameters trained by normal data and used for detecting adversarial examples in 

NIC. 

・ kernel: the RBF kernel is used as the algorithm for One Class SVM. 

・ gamma: the gamma parameter of the RBF kernel is set to 'auto'. 

・ nu: the upper limit for the percentage of training error and the lower limit for the 

percentage of support vector are set to 0.3 in this case. 
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Table 8.4 Functions of the parts comprising the adversarial example detection process procedure 

Output extraction from each layer 

input Normal data (images) 

Adversarial examples (image). 

Trained models, trained on normal data (models trained on normal data) 

processing Obtain the output of each layer of the trained model for normal and adversarial 

examples and save it in 'numpy in numpy' format. 

output (e.g. 

of dynamo) 

Output data from each layer 

 

VI and PI calculations for normal data 

input Output data from each layer of normal data 

processing Calculate VI, PI from the output data of each layer of normal data. 

output (e.g. 

of dynamo) 

VI, PI 

 

VI and PI calculations for adversarial examples 

input Output data from each layer of adversarial examples 

Created at the time of calculation to PI with normal data Derived model of PI 

processing Compute VI, PI from the output of each layer of adversarial examples. 

output (e.g. 

of dynamo) 

VI, PI 

 

Calculation of NIC 

input VI of normal data, PI 

VI of adversarial examples, PI 

processing NIC of normal data is created from VI and PI of normal data and NIC of 

adversarial examples is calculated from VI and PI of adversarial examples, 

respectively. 

output (e.g. 

of dynamo) 

NIC for normal data, NIC for adversarial examples 

 

Evaluation and display of results in OSVM. 

input NIC of normal data 

NIC for adversarial examples. 

processing Train OSVM on normal data to create a model, and use this trained model to 

judge adversarial examples; OSVM uses sk-learn's one class svm API. The 

judgement results are then displayed. 

output (e.g. 

of dynamo) 

Assessment Results 
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Figure 8.4 shows output values from each layer when one normal data and its adversarial 

examples are input to the NIC framework, where the horizontal axis is the ID of the model 

derived to calculate the NIC at each layer (Note. There are multiple outputs from each layer for 

one image, for example, a convolution layer in CNN), and the vertical axis represents the signed 

distance of each NIC to the One Class SVM classification hyperplane of the NIC of the normal data, 

that is the closeness to the normal data in this case. The black dots in Figure 8.4 (a) represent 

the output relative to the normal data, the red dots in Figure 8.4 (b) are the outputs for 

adversarial examples. In this calculation, the adversarial examples in Figure 8.4 (b) were 

generated by using the FGSM 𝐿∞ attack method. 

 

(a) Normal input data           (b) Adversarial input data 

Figure 8.4 Comparison of NIC framework outputs 

 

After training One Class SVM by normal data, One Class SVM function 𝑓(𝑥) can be used for 

detecting adversarial examples such that if 𝑓(𝑥) ≥ 0 then the input 𝑥 is normal otherwise it 

is adversarial. Most of the output for normal data are close to zero as shown in Figure 8.4 (a), 

while approximately 94% of the outputs for adversarial examples are explicitly less than zero as 

shown in Figure 8.4 (b). This difference of the output between Figure 8.4 (a) and (b) explains 

that NIC can effectively detect adversarial examples. 

 Generation of adversarial examples 

As shown in Figure 8.3, NIC framework does not include the program for generating 

adversarial examples. We recommend for using CleverHans [87] if adversarial examples are 

necessary. Figure 8.5 shows some examples in the normal (original) images of handwritten 

numbers (MNIST) and the adversarial examples generated from the normal images by attack 
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method FGSM 𝐿2 with the misclassified labels inferred for the adversarial images. As shown in 

the inference results (label 8) in Figure 8.5 (b), all generated adversarial examples are 

misclassified as 8. 

 

 

(a) Original MNIST data   (b) Generated adversarial examples 

Figure 8.5 Example of adversarial example generation from MNIST (handwritten numbers) images  

and its decision results 

 Reducing calculation costs for VI, PI and VIC 

The calculation method for VI, PI and NIC in the original paper [81] has been explained in 

Section 8.4, but if the calculation method is used, then the dimension of each data (vector) 

becomes very large, due to the problem so-called 'dimension demon'. Therefore, we have tried 

to reduce the dimension as much as possible. In the following section, we explain how each 

calculation is simplified. 

– Calculation of VI: in the NIC framework, let 𝑋𝐵 = 1 for clarifying the correspondence 

between the input data (both normal and adversarial data) and the VI, PI and NIC (i.e., 

for the accuracy of the verification). In addition, as all input data are normalized and 

calculated, the following simplified formula is used: 

𝑉𝐼𝑙 = 𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓2 ∘ 𝑓1. 

– Calculation of PI: as in the case VI above, let 𝑋𝐵 = 1. Then, the following simplified 
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formula is used: 

𝑃𝐿𝑙,𝑙−1 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝑙 , 𝐷𝑙−1) ∘ ⋯ ∘ 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷2 , 𝐷1). 

– NIC calculations: for dimensionality suppression, 𝑋𝐵  is set as follows: 

𝑋𝐵 = (The number of layers from which output are obtained) 

8.7 Evaluation of the effectiveness of NIC with the Kullback-Leibler divergence 

This section reports the results of the evaluation of the effectiveness of the NIC by calculating 

the degree of divergence between the images of normal and adversarial examples and the NIC 

by using the Kullback-Leibler divergence. 

 Kullback-Leibler divergence 

The Kullback-Leibler divergence, denoted by 𝐾𝐿(𝑃 ∥ 𝑄) , is a measure of the degree of 

divergence between two probability distributions 𝑃 (the probability density functions 𝑝) and 

Q (the probability density function 𝑞 ). The Kullback-Leibler divergence is defined by the 

following equation. 

𝐾𝐿(𝑃 ∥ 𝑄) = ∫ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
 

The Kullback-Leibler divergence is 0 when the two distributions are the same, and it increases 

as the divergence increases (the convergence is not guaranteed due to the presence of log). 

Figure 8.6 shows a simple calculation example of the Kullback-Leibler divergence. In Figure 8.6 

(a), both of the distributions 𝑃  and 𝑄  are the same normal distribution whose mean and 

variance are 0.5 and 0.5, respectively, and then the 𝐾𝐿(𝑃 ∥ 𝑄) is 0. In Figure 8.6 (b), the means 

of 𝑃 and 𝑄 are 0.5 and 0.55, and the variance of them are 0.5 and 0.55, respectively, and then 

the 𝐾𝐿(𝑃 ∥ 𝑄) is 0.053. 

 

 

(a) In the case of the same distributions    (b) In the case of the different distributions 

Figure 8.6 Example of Kullback-Leibler divergence calculation 
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 Kullback-Leibler divergence estimation 

The Kullback-Leibler divergence assumes that the probability distributions to be compared 

are fixed, but in practice, both normal and adversarial data are simply sets of images and the 

distributions are unknown. Fortunately, a method for approximating the Kullback-Leibler 

divergence between sets with unknown probability distributions [88] is known. The outline of 

the approximation method calculates the Kullback-Leibler divergence as a solution of an 

optimization problem on the following linear polynomial of  𝑟𝜃(𝑥)  as the constraint for 

minimizing the density ratio 𝑟(𝑥) = 𝑝(𝑥)/𝑞(𝑥): 

𝑟𝜃(𝑥) = ∑ 𝜃𝑗𝜓𝑗(𝑥) = 𝜽𝑇𝝍(𝑥)

𝑏

𝑗=1

, 

where 𝜓𝑗(𝑥) is the RBF kernel and is defined by 

𝜓𝑗(𝑥) = exp (−
‖𝑥 − 𝑥′‖2

2ℎ2
), 

where ℎ is a determinable constant and is the bandwidth. 

Then, the Kullback-Leibler divergence can be approximately calculated by the linear 

polynomial 𝑟𝜃(𝑥) obtained as the solution of the optimization problem as follows [88]: 

𝐾𝐿(𝑃 ∥ 𝑄)  ~  
1

𝑛
∑ log 𝑟(𝒙𝑖)

𝑛

𝑖=1

 

 Effectiveness evaluation of NIC  

In Section 8.5, we have shown that the NIC method can effectively detect adversarial 

examples as anomaly data by experiments. In this section, we show the degree of divergence 

between normal data and adversarial examples by comparing the Kullback-Leibler divergence 

of them for explaining the reason why NIC is effective.  

At first, Figure 8.7 shows the computational results of the Kullback-Leibler of normal data 

and adversarial examples (generated by the attack method FGSM 𝐿2) for 50 image data samples, 

as shown in Figure 8.5. The approximate value of the Kullback-Leibler divergence for the FGSM 

in Figure 8.7 is 0.46. Here, note that the average value of the multiple Kullback-Leibler divergence 

is shown in Figure 8.7 because there are multiple values of NIC for one image as explained in 

Figure 8.4. 

Next, Figure 8.8 shows the computational results of the Kullback-Leibler of NIC of the normal 

data and the adversarial examples used in Figure 8.7. The approximate value of the Kullback-

Leibler divergence in Figure 8.8 is 4.47. Therefore, the Kullback-Leibler divergence in Figure 8.8 

is about 10 times larger than one in Figure 8.7. We conjecture that the results mean that the 

perturbations added to normal data can be extracted as more explicit difference by the NIC 

method. 
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Figure 8.7 The Kullback-Leibler divergence for normal and adversarial examples 

 

 
Figure 8.8 The Kullback-Leibler divergence of NIC for normal and adversarial examples 
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9 AI Quality Management in Operation 

In this chapter, we report on the results of a survey on the latest technologies for detecting 

changes in data distribution over time, called concept drift, and adapting machine learning 

models to the changed distribution for AI quality management during operation. In addition, we 

also introduce the results of a survey on the latest unsupervised domain adaptation technologies 

published at recent international major conferences on machine learning and computer vision 

for further development of the AI quality management technologies. 

Concept drift is one of the main causes of performance degradation of machine learning 

models running in AI systems during operation. In order to maintain quality that is satisfied at 

the beginning of the operation of the system throughout the operation period, it is necessary to 

continuously monitor whether drift occurs or not. In addition, if necessary, we retrain the 

machine learning models in the system with the latest data to adapt them to the distribution of 

data changed after the drift occurs. As the use of machine learning technologies has been 

expanded in recent years, AI systems operating with such technologies will require processing a 

large amount of data without their true labels (ground truths) in a short period of time, including 

types of data that have not been handled in the past. 

In the fiscal year 2019-2020, we conducted a survey on the latest technologies for detecting 

and adapting to the concept drift to maintain the performance of machine learning models 

during operation. As a result of this survey, we found that most of the methods developed so far 

are supervised methods that use true labels of data additionally acquired during operation for 

the detection and adaptation. However, such true labels are not always available or are often 

costly even if they are available. In order to expand the applicability of the detection and 

adaptation methods and reduce their operational costs, we found that an "unsupervised 

method" that does not use the true labels or a "semi-supervised method" that uses only a limited 

number of the true labels is promising. We summarized the results of the surveys organized and 

discussed from this perspective.  

For details on the survey on detection methods, see Section 7.8 of the Machine Learning 

Quality Management Guidelines [1]. In addition, adaptation methods are summarized in our 

survey result [89]. Table 9.1 shows the comparison of our survey with the other existing surveys 

on concept drift detection and adaptation methods. Gama et al. summarized their survey result 

in [90] and Lu et al. added recently published drift detection and adaptation methods in [91]. 

Those survey papers mainly focus on introducing "supervised" methods that use true labels of 

operational data for drift detection and adaptation. On the other hand, Ishida et al. introduced 

"unsupervised" concept drift detection methods that do not use true labels of data for drift 

detection in [92]. In comparison with those existing survey results, we introduced 

"unsupervised" and "semi-supervised" concept drift adaptation methods that do not use or use 

only a limited number of true labels as mentioned above. Furthermore, we introduced those drift 

adaptation methods based on the characteristic of each method. In detail, we listed ten 

remarkable unsupervised/semi-supervised drift adaptation methods and classified them 
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according to: i) types of drift that can be dealt with effectively, ii) processes where true labels of 

data are required during operation and the percentage of the labeled data used in verifications 

shown in the papers, and iii) machine learning models or clustering methods used in each 

method. Finally, we closed our survey by discussing further development of unsupervised and 

semi-supervised concept drift adaptation methods using knowledge obtained from relevant 

unsupervised domain adaptation techniques. 

 

Table 9.1 Comparison of survey papers on concept drift detection and adaptation  

 Detection Adaptation 

Supervised Gama et al.[90], Lu et al.[91] 

Unsupervised / 

Semi-supervised 
Ishida et al.[92] 

Okawa and Kobayashi [89], [93] 

(Ours) 

 

In the future operation of AI systems, there is a growing need for new adaptation techniques 

that do not use the original training data (i.e., source data) to adapt machine learning models 

from the viewpoint of data privacy and portability in addition to that can deal with changes other 

than those in the distribution of input data. In particular, adaptation techniques that do not 

depend on such training data (source data) are called "source-free domain adaptation 

techniques" or "test-time adaptation techniques (if they adapt online)”. These source-free and 

test-time adaptation technologies have been attracting more attention because they can reduce 

costs not only on management and transmission of source data for adaptation but also on 

security for data storage. 

In FY2021, following the above-mentioned surveys, we conducted a survey on the latest 

research trends in unsupervised adaptation techniques to data changes presented at major 

international conferences in the fields of machine learning and computer vision held in 2019-

2021, focusing on unsupervised concept drift adaptation techniques and unsupervised domain 

adaptation techniques. The result of this survey is summarized in [93]. In detail, we listed and 

introduced 15 remarkable concept drift detection and unsupervised domain adaptation 

methods and classified them according to: i) kinds of adaptation problems, ii) kinds of data and 

labels used in detection and adaptation, iii) availability for adaptation to label shift, and iv) kinds 

of validation tasks. According to the results of this survey, it is shown that there has been 

development of the source-free adaptation and test-time adaptation techniques mentioned 

above and adaptation techniques that are able to adapt to changes other than the distribution of 

input data, such as label shifts. Furthermore, some techniques have been validated not only for 

image classification problems, but also for semantic segmentation and object detection 

problems. These research trends in unsupervised adaptation techniques are expected to solve 

new problems in AI operations, such as maintaining data privacy, and to be used in various 

situations in future AI operations. 
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