
Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

i

Technical Report on Machine Learning

Quality Evaluation and Improvement

4th English Edition

August 1, 2024

Technical Report DigiARC-TR-2024-02

Digital Architecture Research Center

National Institute of Advanced Industrial Science and Technology (AIST)

Technical Report CPSEC-TR-2024002

Cyber Physical Security Research Center

National Institute of Advanced Industrial Science and Technology (AIST)

Technical Report

Artificial Intelligence Research Center

National Institute of Advanced Industrial Science and Technology (AIST)

© 2024 National Institute of Advanced Industrial Science and Technology

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

ii

Foreword

In the project "Research and Development on the Quality Assessment Reference and Testbed

of Machine-Learning /Artificial Intelligence Systems" (JPNP20006) commissioned by the New

Energy and Industrial Technology Development Organization (NEDO), we are developing

Machine Learning Quality Management (MLQM) Guideline [1] to explain the quality of machine

learning. While developing the guidelines, we have also been researching and developing

techniques for evaluating and improving the quality of machine learning. This report presents

the results of the research and development for the 5 years (FY 2019~2023) to technically

support the quality evaluation described in the MLQM Guideline.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

iii

Table of Contents

1 Introduction ... 1

1.1 Overview of this research and development .. 1

1.2 Author list .. 4

1.3 Acknowledgements ... 4

2 Visualization of Machine Learning Models ... 5

2.1 Survey on methods to support using machine learning .. 5

2.2 Visualization of model structure and worker information .. 7

2.3 Future work ... 16

3 Improved Quality through Better Application of Data Augmentation ... 17

3.1 Research purpose .. 17

3.2 Improved application layer for data augmentation .. 18

3.3 Proposal for a new mixing method by improving Mixup ... 20

3.4 Efficient data augmentation policy search using Affinity and Diversity............................ 25

4 Debug-Testing of DNN Software ... 29

4.1 Direct cause of failure .. 29

4.2 Internal indices .. 30

4.3 Experiments: method and results .. 31

4.4 Related work ... 34

4.5 Conclusion .. 35

5 Debugging and Testing of Training Data ... 36

5.1 Three Problem Settings .. 36

5.2 Debugging Problems of Training Data ... 36

5.3 Outliers and Neuron Coverage... 40

5.4 Experiments and Discussions .. 42

5.5 Final Remarks ... 50

6 Evaluation and Improvement of Robustness .. 52

6.1 Robustness measure (maximum safe radius) ... 52

6.2 A survey on methods for evaluation and improvement of robustness 53

6.3 Conclusion .. 59

7 Estimation of Generalization Error Bounds .. 60

7.1 Weight-perturbed generalization error ... 60

7.2 Estimation of weight-perturbed generalization error bounds .. 62

7.3 Thresholds for worst weight-perturbations .. 64

7.4 Estimation experiments of weight-perturbed generalization error bounds 65

7.5 Related work ... 68

7.6 Towards the evaluation of “the stability of trained models”... 70

8 Adversarial Example Detection... 72

8.1 Research summary ... 72

8.2 Overview of adversarial example detection approaches ... 72

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

iv

8.3 NIC system design overview... 74

8.4 NIC system implementation ... 75

8.5 Computer experiment ... 76

8.6 Implementation of the NIC framework .. 78

8.7 Evaluation of the effectiveness of NIC with the Kullback-Leibler divergence 83

9 AI Quality Management in Operation ... 86

10 References ... 88

Machine Learning Quality Management Guideline, National Institute of

4th English edition Advanced Industrial Science and Technology

DigiARC-TR-2024-02 / CPSEC-TR-2024002

1

1 Introduction

Machine Learning Quality Management (MLQM) Guideline has been developed to clearly

explain the quality of various industrial products including statistical machine learning (4th

Edition [1]). The fourth edition of the MLQM guideline describes the 14 internal quality

characteristics (e.g., Stability of the trained model, Reliability of underlying software system,

etc.) for machine learning systems, but techniques for evaluating and improving these internal

quality characteristics have not been sufficiently established yet. This report presents the results

on survey, research, and development of techniques for evaluating and improving the internal

quality characteristics, which have been conducted for supporting the development of the MLQM

guideline.

1.1 Overview of this research and development

Figure 1.1 shows the relationship between the machine learning quality evaluation and

improvement techniques (the center yellow boxes in Figure 1.1, where the number in each box

shows the chapter number explained in this report) that were researched and developed for the

5 years (FY 2019~2023). The relations to the phases of the machine learning model lifecycle and

the 14 internal quality characteristics are also shown. Each technique is briefly introduced below,

and the details are explained in Chapters 2 ~ 9.

Figure 1.1 Machine learning quality evaluation and improvement techniques in this report

– Visualization of Machine Learning Models (in Chapter 2):

To support the quality evaluation work of machine learning models, we attempted to

visualize the difference and comparison results between multiple models and the

sensitivity of the workers (annotators and model designers) reflected in each model.

Internal quality characteristics in the MLQM Guideline

E-0: Continuous monitoring and recording during operations

A-1: Sufficiency of problem domain analysis

C-2: Stability of trained models

D-1: Reliability of underlying software systems

B-2: Uniformity of datasets

B-1: Coverage of datasets

A-2: Sufficiency of data design

C-1: Correctness of trained models

E-1: Maintainability of qualities in operation

B-3: Adequacy of data

A-0: Sufficiency of problem analysis

B-4: External-quality-dependent adequacy of datasets

C-3: External-quality-dependent adequacy of the trained model

D-2: Other reliability regarding the program

Techniques in development

Techniques in operation

8: Detection of Adversarial data

9: AI quality management

4: Debug-testing of DNN Software

3: Improving application of DATraining data

Dataset

Testing data

Data in operation

Inference prog.

Input

Input

Monitor prog.

ML model

Update

Inference prog.

Evaluation prog.

Training prog.

ML model

Training algo.

2: Visualization of ML models

6: Evaluation of robustness

5: Debug-testing of training data

7: Evaluation of Generalization

ML quality evaluation and improvement techniques

researched and developed in FY 2019~2023A
n
a
ly

sis
O

p
e
ra

tio
n

D
e
v
e
lo

p
m

e
n
t

Domain

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

2

We proceeded with the implementation of a tool to visualize the work procedures of

the workers involved in creating the models and their influence on the models with

multiple views[2][3]. The main functions visualize the difference between the three

items used training data, model structure, and optimization algorithm, as well as the

intention of the adjustment by the operator and his/her impression and evaluation of

the model. Using this tool, we created visualization results of multiple machine

learning model adjustment work histories.

– Improved Quality through Better Application of Data Augmentation (in Chapter 3):

To improve the data-diversity obtained by data augmentation and increase accuracy

and stability in deep learning, we devised new two data augmentation methods, FC-

mixup [16] and Latent DA, with simple algorithms, and report the results of their

impact on generalization performance in experiments [4]. In addition, for the Latent

DA method, we have been developing AdaLASE, for dynamically selecting appropriate

layers for the data augmentation. For the FC-mixup method in CNN, there are two kinds

for mixing: FC-channel which mixes at the channel level of CNNs, and FC-pixel which

mixes at the pixel level. We compare them and their hybrid with the existing method

Manifold Mixup, and then confirmed that the proposed method demonstrates higher

accuracy than the existing methods. In addition, for efficiently exploring suitable data

augmentation policies in early training epochs, we proposed a new metrics based on

Affinity and Diversity, and then demonstrated the effectiveness of this approach.

– Debug-Testing of DNN Software (in Chapter 4):

The failures of DNN (Deep Neural Network) models can be considered from two

viewpoints of causes. One of them is the direct cause during inference (by prediction

and inference programs) and the other one is the root cause during training (by

training and learning programs, training models, and training data). We proposed an

indicator and an analysis method for evaluating the presence of bugs in training

programs by the internal information (e.g., neuron coverage) of DNN models, and then

confirmed that the indicator is useful by experiments [5].

– Debugging and Testing of Training Data (in Chapter 5):

For the case that failures in DNN (Deep Neural Network) models are caused by training

data bias, we researched methods for detecting such bias from two quality viewpoints:

model accuracy and model robustness. Then, we obtained the experiment results that

the robustness of the DNN models increases without decreasing the correctness by

retraining the DNN models by removing data such that causes low or high neuron

coverage from the training dataset. It means that the internal states such as neuron

coverage is useful for debugging training datasets. Such debag approach is thought to

be a combination of a statistical view with software engineering methods.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

3

– Evaluation and Improvement of Robustness (in Chapter 6):

To evaluate and improve robustness of machine learned models, we report on the

results of a survey on methods to measure the maximum safe radius (the maximum

value of noise that can be guaranteed not to cause misclassifications) as a measure of

robustness for input noise including adversarial examples, and methods to increase the

safe radius.

– Estimation of Generalization Error Bounds (in Chapter 7):

To evaluate the stability of trained models described in the MLQM Guideline, we

focused on randomly/worst weight-perturbed generalization error bounds of neural

classifiers and demonstrated that they are useful for evaluating the stability by

experiments. Here, the weight-perturbed generalization error of a classifier represents

the expected value of the misclassification-rate for any input including unseen input

when perturbations are added to weights (i.e., training parameters) in the classifier,

and random perturbations are randomly selected from uniform distribution with

specified range, while worst perturbations are selected towards misclassification

within the range.

– Adversarial Example Detection (in Chapter 8):

To establish a practical method for detecting adversarial examples, we report on the

results of a survey on the state-of-the-art adversarial example detection methods and

classifies them into four main categories, and then present the results of follow-up

experiments on representative methods. Consequently, we confirmed that NIC method

shows the highest detection rate. Then, we constructed the NIC framework for

detecting adversarial examples based on the NIC method and evaluated it by the

Kullback-Leibler divergence for explaining the reason why the NIC method is effective.

– AI Quality Management in Operation (in Chapter 9):

To maintain quality of machine learning models even for unseen data and/or changing

trends during operation, we report on the results of a survey on detection and

adaptation methods for changes in input-data distribution over time (e.g., concept

drift), and also a survey on the latest unsupervised domain adaptation methods (e.g.,

label-shift). The surveys include not only supervised methods but also unsupervised/

semi-supervised methods that are promising approaches from the viewpoints of

operational costs and practical adaptability.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

4

1.2 Author list

The authors of each chapter are as follows:

– Chapter 1: Yoshinao Isobe (AIST CPSEC)

– Chapter 2: Yuri Miyagi (AIST AIRC)

– Chapter 3: Tomoumi Takase (AIST AIRC)

– Chapter 4: Shin Nakajima (NII)

– Chapter 5: Shin Nakajima (NII)

– Chapter 6: Yoshinao Isobe (AIST CPSEC)

– Chapter 7: Yoshinao Isobe (AIST CPSEC)

– Chapter 8: Yusei Nakashima and Keiichi Nishida (Techmatrix)

– Chapter 9: Yoshihiro Okawa and Kenichi Kobayashi (Fujitsu)

1.3 Acknowledgements

This report is based on results obtained from the project "Research and Development on the

Quality Assessment Reference and Testbed of Machine-Learning /Artificial Intelligence Systems"

(JPNP20006), commissioned by the New Energy and Industrial Technology Development

Organization (NEDO).

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

5

2 Visualization of Machine Learning Models

Information visualization is becoming a popular method to support the analysis of the

structure and behavior of machine learning models, which are known as black boxes. We have

started research on a new method for visualizing machine learning models with the following

two objectives:

– Visualization of differences and comparison results between multiple models

➢ Implementation of visualization based on expressions that are easy for humans to

interpret and understand

– Visualization of the sensitivity of workers (annotators of training data, designers of

model structures) reflected in the model

➢ Proposal of new factors that can be used for quality assessment

In this chapter, we first describe the results of a survey of recent machine learning model

visualization techniques. Then, we introduce the results of a prototype visualization tool for

observing model and worker information, developed in 2020-2023, and our future

implementation policy.

2.1 Survey on methods to support using machine learning

The basic purpose of visualization methods for machine learning is to improve the

interpretability of models, and this is closely related to XAI (Explainable AI), which has attracted

attention in recent years. There are no definitive definitions or evaluation methods for XAI,

however, many papers about the classification of XAI are published, and we can devise

visualization objectives and methods along these lines. In [6], the approaches to increase

interpretability are classified into four categories:

(1) Total explanation (Approximation of a complex model structure by a simple model)

(2) Partial explanation (Explaining the rationale for decisions about model output results)

(3) Design of explainable models (Creation of readable models at the design stage)

(4) Explanation of the deep learning model (e.g., Highlighting the parts of the image data

that the model recognizes)

Especially (2) and (4) have much room for contribution by visualization. These machine learning

visualization methods are continuously being studied, and the number of survey papers is

increasing due to the diversity of applications and target cases. For example, Hohman et al. [7]

described and classified deep learning visualization methods according to the 5W1H elements.

It also presents several overall directions and issues in the field of deep learning visualization.

Especially "improving interactions for model evaluation" and "improving interpretability

through active human involvement in models” are closely related to our research, which aims to

develop visualization methods for quality evaluation.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

6

As research on machine learning visualization progresses and becomes popular in the real

world, there is a growing tendency for complex analysis to be performed in a single visualization

view. In the past, visualization methods basically focused on detailed analyses of single models

specialized in either data ([8]) or model structure ([9]). However, in recent years, research has

been conducted on combined visualization methods for data and model structure, as well as

methods that aim to compare multiple models. The number of elements that make up a machine

learning model is enormous, and it takes a lot of time and effort to create visualization results

for the number of models and compare them side by side. Besides, the differences in structure

and accuracy between the models to be compared are often small and features of the models

may be overlooked. Therefore, there is a high need for a visualization method that uses

expressions that emphasize the differences so that the differences can be found efficiently within

a limited screen. (For example, in [10], the pipeline from data input to output, hyperparameter

values, etc. for more than 10 models can be compared on a single screen.)

So far, we have introduced trends and examples of visualization methods regarding the

properties and accuracy of the models themselves. In parallel with this, we also investigated how

the workers (annotators, designers, and end users) involved in the creation and evaluation of

the model interact with the models. In fields such as image recognition, models with accuracy

beyond human recognition capabilities have been developed, but there is a persistent suggestion,

regardless of the field, that active human intervention is desirable to improve the accuracy of

models. There are many papers that discuss the following items regarding the relationship

between AI and humans and effective intervention methods in the modeling process:

– Introduction of operations (adjustment and evaluation) to improve the accuracy of the

model in the learning process

– Designing an interface that is easy to use and can maintain the motivation of the

operator

– Collaboration with related fields such as cognitive science and psychology

As an example, Amershi et al. examined the psychological state of workers who were

assigned feedback to evaluate and improve several models [11]. The authors found that the

workers preferred to be able to directly tell the correct processing steps to models. They also

said that workers get more motivated to give more active feedback when they find their actions

are improving the accuracy of the model. Although there seem to be few examples of

visualization of such information about the workers themselves and the impact of each worker

on the model, it can be adopted as a ground for quality assurance as follows:

– Show that their knowledge is sufficiently reflected in the model's behavior when

domain or machine learning experts participated in the creation of the model.

– Indicate which workers' behavior is strongly reflected in the model and use this as a

clue to identify elements (training data, parameters, etc.) that should be adjusted.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

7

2.2 Visualization of model structure and worker information

Based on the above research results, we place particular importance on "comparative

visualization of multiple models" and "visualization of worker's sensitivity" among machine

learning model visualization methods. We proceeded to design a visualization tool with both

properties. Figure 2.1 shows an overview of the proposed method. In this study, workers are

classified into three types: annotators, model designers, and end users, with a particular focus

on model designers.

Figure 2.1 Overview of machine learning models and worker information visualization methods

 Logging of differences between models

The first step is collecting logs of the structure of the model to be visualized, the process of

adjusting the model, and the test results. The current implementation assumes image

classification or regression analysis cases. The user extracts from the records by Comet.ml, a

machine learning experiment management tool, or from articles submitted to machine learning

competitions (codes and results used, and their explanations), the process of parameter

adjustment by the model designer, and the results of tests. They get saved as text files. For the

annotators, we do not directly collect work logs, but indirectly evaluate their work based on how

the model designers selected data and applied preprocessing.

From these logs, we calculate differences between models (the amount of change from the

model used immediately before). Differences between models are classified into three

categories: training data, model structure, and optimization algorithm, and are calculated for

each. The difference in training data is calculated by adding up the data used, the number of

classes, and the difference in parameters used for preprocessing. The difference in model

structure is obtained by creating pairs of layers that comprise the two models and summing the

dissimilarities (differences in layer types and parameters) of each pair (Figure 2.2). For the

difference in optimization algorithms, a constant is assigned if the algorithm types are different.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

8

If they are the same, the difference is calculated from the difference in parameters. After

obtaining the three types of differences, we obtain the overall change in the model by summing

these values. In addition, the difference calculation for each category is obtained by adding the

difference value calculated from basic information such as the number of training data and the

number of layers in the model to the difference value calculated from factors unique to each case

(e.g., processing related to data expansion in the case of image classification). Although this

method makes it difficult to directly compare difference values in different cases because the

formula for calculating differences changes from case to case, it does allow for comparison of the

development process of a particular model within the same case, and of models created by

multiple workers.

Figure 2.2 Model structure difference calculation flow

 Visualization of model structure and worker information

We use the collected logs to visualize the structure of the model and information about the

workers. The main users of this tool are assumed to be model designers. Considering the

possibility that users unfamiliar with visualization may be included, we proceeded with the

implementation by combining basic visualization methods (line graphs, bar graphs, etc.) and

actively linking them (highlighting related parts, etc.). In FY2020, we implemented views on

basic information such as model structure and output results, and in FY2021-23, created to

visualize the progress of model adjustments and testing by workers. Figure 2.3 shows the

overview of prototype visualization views, which visualize the results of MNIST for two simple

models developed in FY2020.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

9

Figure 2.3 Visualization views on model structure and output results

We created the tool on JupyterLab, mainly using the machine learning library PyTorch and

the visualization library Bokeh, so that we could compare the features of the two models:

(1) Network of each model structure

(2) Bar graph of output results for each class

(a) Visualization for each model

(b) Visualization of the difference between two models

(3) Scatter plot of output result correlation between two selected classes for each model

(4) Line graph of accuracy

(5) Thumbnail list of data classified with particularly high (low) confidence

Figure 2.4 shows an example of the results of classifying the output to MNIST for two models.

The horizontal axis represents the class from 0 to 9, and the vertical axis represents the amount

of data. The color-coding of each bar represents the combination of correct (T) and incorrect (F)

answers for the two models, for example, where TF (FT) means that only model 1 (2) correctly

classified. Immediately after the start of learning (Figure 2.4, left), model 1 had a high percentage

of correct answers in classes 0, 1, and 7, and model 2 had a high percentage of correct answers

in classes 2, 6, and 8, indicating that each model had different strengths. At the advanced stage

of learning (Figure 2.4, right), both models had high percentages of correct answers in many

classes. Besides, model 1 has a high percentage of correct answers, including classes 3, 4, 5, and

7, which model 2 is not good at, indicating that model 1 is more advanced in learning than model

2 at this stage.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

10

Figure 2.4 Examples of comparing the output results of two models

Figure 2.5 Overall view of the model adjustment work history visualization

Figure 2.5 shows the structure of the time-series visualization view of the model adjustment

work history implemented from FY2021 to FY2023. The logs about the model structure and test

results are used as input for visualization by network graphs.

The graph is arranged with the vertical axis as the evaluation index of the model and the

horizontal axis as the time axis. The graph is composed of alternating nodes of different types

and shapes as shown in Figure 2.6, which are defined as "model nodes" and "intention nodes".

The model nodes represent the adjustments and test results for one of the models used. The

interior of the model node is divided into three colored rings. The color of the ring represents

the difference from one of the previously used models, which from the outside means the

difference in training data (orange), the difference in model structure (purple), and the

difference in optimization algorithm (green). Higher saturation indicates a larger difference

value from the compared model, and the correspondence between color and difference value

can be checked with the color bar placed at the right end of the view. Usually, model nodes are

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

11

placed at equal intervals along the horizontal axis to indicate the order in which the models were

used. However, in cases where multiple settings were prepared for a particular parameter and

comparative experiments were conducted simultaneously, multiple models used in parallel can

be grouped and placed in close proximity. In this case, the past models to be used in the

difference calculation are selected as shown in Figure 2.7. In this example, one model is used in

Stage 1, three models are set up in Stage 2, and two models are created and used in parallel in

Stage 3. If multiple models are not used in parallel in the previous phase, as in phase 1 to phase

2, they are compared to the models in the immediately preceding phase (blue arrows). When

multiple models are candidates for comparison, as in steps 2 through 3, priority is given to

comparisons with models with similar structures (red arrows) or with models that were more

accurate (green arrows). These settings allow for observation of "the process of development of

a model of a particular structure through detailed parameter adjustments" and for comparison

and evaluation by focusing on models with parameter settings that are likely to be employed

continuously with good accuracy.

Figure 2.6 Composition of the graph of model adjustment work history

Figure 2.7 Image of selection of model nodes to be compared

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

12

The intention node is placed between the two model nodes and is assigned two different

colors: inner and outer. The inner color represents the intention or policy of the worker in

creating the model immediately following that intention node. Information on intentions and

policies can be selected from a list of pre-defined options during the logging phase, and the color

of the node changes accordingly (Figure 2.6). The outer part of the intention node, on the other

hand, visualizes the worker's impression and evaluation of the immediate model. The frame gets

colored red (blue) when "the accuracy of the created model has fallen (risen) below the expected

level" by adding a note to the log. This means the tool can highlight areas of unexpected results

to indicate points where work policies should be analyzed and modified.

These nodes are connected by three types of edges (solid, thick dotted, and thin dotted lines)

to indicate the order in which the model was used and the flow of development (Figure 2.8).

Solid edges connecting multiple model nodes mean that they are a group of models tested in

parallel. The thick dotted line corresponds to the timing when the parallel experiment was

completed, meaning that the next model was used after checking the results of the previous

model and applying changes to the settings. Therefore, the intention node is placed in the middle

of the thick dotted edge. Thin dotted edges represent model derivation relationships, such as

when subsequent models take over parameter settings. This does not necessarily connect

models that have been used in succession, but it does confirm the long-term developmental

relationships when models of a particular structure are fine-tuned and used.

Figure 2.8 Edge types and display examples

Using these functions, we created visualization results for the work history data of the three

cases.

(1) Model tuning history during user testing in the study of machine learning model

visualization tools

(2) Model tuning history for one participant in the Kaggle competition Digit Recognizer

(3) Model tuning history for 6 participants in the Kaggle competition Prediction of Wild

Blueberry Yield

Using the data in (1), we visualized the accuracy and the amount of change in model structure

when multiple ResNet models trained on CIFAR-100 were tested in sequence (Figure 2.9).

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

13

Figure 2.9 An example of visualization of a worker's model adjustment history

Table 2.1 Parameters of the model used for work history visualization

Referring to the hyperparameter tuning scenario conducted in [12], the model was trained

and tested 6 times and logged while changing the parameters as shown in Table 2.1. 𝑙 is the

learning rate, 𝑚 is the momentum value. 𝑝 and 𝑎 are the erasing probability and max erasing

area when random erasing was applied to the training data. 𝑑 is the depth of the ResNet model

used. Note that in this case, all the intent nodes are grayed out because no information on the

intent nodes was entered. The numbers in Figure 2.9 correspond to the Indexes in Table 2.1. In

2 and 5, the outermost rings in the model node that represent changes in the training data are

highlighted in red. In going from model 1 to 2 and from 4 to 5, this reflects a significant change

in 𝑝 and 𝑎, the parameters related to the training data. Similarly, in 3, 4, and 5, the nodes are

highlighted in green, indicating changes related to the optimization algorithm. Specifically, this

reflects changes in 𝑙 and 𝑚. In addition, only in 6, the node is colored purple, indicating that a

change in the model structure difference has occurred.

Next, we present an example of visualization for the participation records of the machine

learning competition in (2): We selected one article of the code and its explanation of the

parameter comparison experiment submitted to Digit Recognizer, one of the competitions held

for beginners at Kaggle, and information on parameter settings and obtained accuracy was

entered into the visualization tool. The experiment was divided into five stages as shown in

Figure 2.10. Except for the fifth step, the process is iterative, focusing on a particular element

(parameter or model structure) to find the optimal setting, and then taking over the setting to

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

14

verify the next element. Figure 2.11 shows the visualization results. Since the adjustments

mainly change the model structure and the Dropout rate, dark purple and green colors can be

seen in the colors of some model nodes. The change in the color of the intent node indicates that

the first half of the node is green, indicating that the parameters are being adjusted while

considering the constraints of the computational resources, and the second half, which is purple,

indicates that the setting that improves accuracy is being obtained in priority. If we look at the

thin dotted edges that represent the derivation relationship of the models, we can see that the

model that is the derivation source (the model node at the left end of the thin dotted edge) is not

necessarily the one that achieved the optimal accuracy among the models experimented in

parallel (the model nodes connected with solid lines). As with the intent node, this reflects the

fact that, in consideration of the cost of computational resources, priority was given to selecting

"a setting that achieves some high accuracy but does not make the cost too large".

Figure 2.10 Parameterization of the adjustment process for models submitted to Digit Recognizer

Figure 2.11 Visualization results of the adjustment process of models submitted to Digit Recognizer

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

15

Figure 2.12 Example visualization of Prediction of Wild Blueberry Yield participant's work record

(for 6 participants)

Figure 2.13 Example visualization of Prediction of Wild Blueberry Yield participant's work record

(individual)

The data in (3) are work records for six participants in Kaggle's competition Prediction of

Wild Blueberry Yield, and Figure 2.12 and Figure 2.13 show the visualization results. In this case,

unlike (1) and (2), MAE is used as the evaluation index of the model, so smaller values on the

vertical axis indicate better results. Figure 2.12 depicts the records of six people together, while

Figure 2.13 depicts the records of one person at a time. Differences can be seen in the overall

shape of the graphs created and in the number of nodes, indicating that the flow of MAE changes

and the number of times the test was performed differed greatly from worker to worker. On the

other hand, there are large differences in the length of the work history, and in Figure 2.12, as a

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

16

result of aligning the beginning of the work history and arranging the nodes in order from the

left, there are too many nodes concentrated at the extreme left end of the screen, making it

difficult to compare the latter part of the work history. In addition, because the amount of change

in some models is extremely large, only the corresponding model nodes are colored darkly, and

the color of the nodes of other relatively little-changed models does not change much, making it

difficult to observe detailed difference values.

2.3 Future work

In future work, we would like to expand the visualization function with the following policy.

First, we will introduce more detailed difference value calculations for the data used in this study

to enable comparison of various items. Then we would like to compare the work patterns of a

large number of workers and visualize the similarity between models or workers, and the

classification results in an overhead view. By observing these visualization results, we would like

to be able to estimate the skill level of workers and classify the characteristics of work (work

patterns). Furthermore, we aim to present the results of the recommendation of model

improvement measures along with the calculation results of the difference values and the

contents of the visualization results.

Although this method currently assumes manual model design, it would be useful to extend

it to a wider range of cases by combining it with NAS (Neural architecture search) and other

methods.

In order to evaluate this method, we would also like to conduct user tests on the functionality

of the visualization in the form of observing the generated visualization result images and the

visualized contents.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

17

3 Improved Quality through Better Application of Data Augmentation

This chapter describes the results of developing a new method for applying data

augmentation in neural network learning and evaluating its effect to learning quality through

experiments.

3.1 Research purpose

Data augmentation is a technique to increase the number of samples by adding deformations

to the data, and it is highly effective in deep learning, which has a tendency of performance

degradation when the number of training samples is small. On the other hand, the effectiveness

of data augmentation strongly depends on the data used, so the selection of data augmentation

methods and the parameters of each method must be set appropriately. However, theoretical

analysis of data augmentation is difficult, and general ways to use it have not yet been

established. This leads to unintentional and inappropriate use, which in turn compromises the

quality of learning. In fact, there are many cases that training performance is degraded by setting

inappropriate values for the amount of deformation of each data augmentation method, such as

mask size or rotation angle, or where the user is puzzled as to what data augmentation method

to select for the actual data to be used.

Therefore, to move away from the empirical use of data augmentation, this study focused on

data diversity. Increasing diversity is the essential goal of data augmentation, and it has been

demonstrated in the work of [13] that increasing diversity has a significant impact on improving

generalization performance. Recently, a technique called RandAugment [14], which dynamically

applies randomly selected operations from multiple data augmentation operations during

training, has attracted much attention, but while it greatly improves diversity, effectively using it

is not easy because many parameters need to be adjusted. In this study, we proposed the

following two new methods for applying data augmentation related to data diversity, and

improved the algorithms and evaluated their performance.

– We apply data augmentation at various layers of the neural network, including hidden

layers, and perform automatic optimization of the applied layer (Section 3.2).

– We improve the Mixup method [15], a promising data augmentation method, and

propose a new way to mix samples (Section 3.3).

Another practical problem in using data augmentation is the computational cost. There are

many types of data augmentation methods, and each method has its own hyperparameters, such

as rotation angle, as mentioned above. In order to select the appropriate data augmentation,

training must be performed many times, which requires high computational cost. Therefore, we

proposed the following method to efficiently find appropriate data augmentation.

– A new data augmentation metric that takes into account Affinity and Diversity is used

to successfully explore data augmentation policies in a short number of training steps

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

18

(Section 3.4).

3.2 Improved application layer for data augmentation

 Data augmentation at hidden layers

Generally, data augmentation is considered to be applied to input data, but in neural

networks, it is also possible to apply data augmentation to hidden layers. There are several

previous studies on this subject, but most of them are not versatile methods, such as Manifold

mixup [17], which limits the method to mixup [15], or other methods that require specific

networks and datasets. In this study, we considered applying various data augmentation

methods used for image data, such as affine transformation and mask processing, in the hidden

layers. Since features are extracted hierarchically in CNNs, data augmentation can be applied in

various layers randomly selected for each minibatch to generate a wide variety of samples. As

with application to input images, data augmentation can be applied to the feature maps obtained

at the intermediate layers, making implementation easy.

An example of actual application of mask processing and translation to an input image and

feature map is shown in Figure 3.1. Here, a sample is input to the model in training, and the

images are shown in the upper row, aligned in size, immediately after data augmentation was

applied at different layers with the same parameters (mask position and translation amount).

The feature maps in the final layer of the sample are shown in the lower row. They are different

images depending on the layer where the data augmentation was applied. This result shows that

data augmentation at various layers leads to an increase in the diversity of the generated data

and results in learning different from when data augmentation is applied only to the input data.

Figure 3.1 Example of applying data augmentation to input images and feature maps obtained at

hidden layers

To compare the performance of data augmentations in the input layer and that in feature

maps, we used various data augmentations and obtained test accuracies for models trained with

supervision. Here, WideResNet28-10 was trained for 200 epochs using the CIFAR-10, Fashion-

MNIST, and SVHN (without extra data) datasets. The results are shown in Figure 3.2. In each

figure, the horizontal axis represents the accuracy [%] of the conventional method (Input DA)

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

19

and the vertical axis represents the accuracy of the proposed method (Latent DA). As can be seen

from these results, the proposed method tends to show higher accuracy than the conventional

method, and the proposed method presented higher accuracy even in cases where the

conventional method presented lower accuracy, such as the results using Crop. These results

indicate that the diverse samples generated by the application of data augmentation to random

layers are effective in improving performance.

Figure 3.2 Comparison of test accuracy between input DA and latent DA

 Selecting appropriate layers for data augmentation

Although previous studies have shown that data augmentation at hidden layers is effective,

the question arises as to which layer is optimal for data augmentation. Although it is possible to

find the optimal layer by repeatedly training with different layers of data augmentation and

comparing the values of validation accuracy, it is an inefficient and impractical method because

it increases the overall training time. Therefore, in this study, we worked on developing a method

to dynamically discover the optimal layer for data augmentation in a single training session.

The approach is to prepare a parameter called the acceptance ratio for each layer, update the

acceptance ratio during training, and apply data augmentation in the layer selected

probabilistically according to the acceptance ratio. The updating of the acceptance ratio is done

using the gradient descent method as shown below.

𝑞𝑙 ← 𝑞𝑙 − 𝜂
𝜕𝐿𝑣𝑎𝑙

𝜕𝑞𝑙
,

where 𝑞𝑙 is the acceptance ratio of layer 𝑙, 𝐿𝑣𝑎𝑙 is the value of the error when the validation

data is input, and 𝜂 is the step width of the update. In practice, the values of the validation data

should not be included in the algorithm, so the update is performed by creating pseudo-

validation data with the training data with data augmentation. In the initial state of training, all

acceptance ratios are set to equal values so that the sum is 1, and the acceptance ratio is updated

for each minibatch. This optimization is expected to improve the generalization performance by

increasing the acceptance ratio of layers suitable for data augmentation and decreasing the

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

20

acceptance ratio of layers unsuitable for data augmentation.

We named this method Adaptive Layer Selection (AdaLASE) and compared its test accuracy

to that of conventional methods. The data was CIFAR-10 and MNIST, the model was ResNet18

and a multilayer perceptron (MLP) with one intermediate layer, data augmentation on input,

data augmentation on random layers, and AdaLASE. Cutout and Mixup were used as

augmentation methods. In the results in Figure 3.3, the mean and standard deviation of the

accuracy for five different initial values are shown for each method. These results show that

AdaLASE can perform as well as or better than conventional methods. Future plans include a

detailed analysis of how layers are selected and whether AdaLASE is functioning properly by

looking at the change in acceptance ratio during training.

Figure 3.3 Comparison of test accuracy between AdaLASE and conventional methods

3.3 Proposal for a new mixing method by improving Mixup

 Feature Combination Mxup

In actual training, data augmentation often involves the simultaneous use of multiple

methods, such as cropping, rotating, and flipping. Therefore, we focus on the compatibility

between methods when multiple methods are used in this way, and in particular, we consider

discussing the compatibility from the viewpoint of data diversity. As a first step in this approach,

we propose a new method that is a variant of an existing method and use it simultaneously with

the original method to increase the diversity of the data generated and improve performance.

The method for formulating the diversity is described in the work of [13]. In this study, we first

compare only the accuracy and verify whether the proposed method improves the performance.

Here, we have improved Mixup [15], one of the data augmentation methods. This method

generates a new sample by linear interpolation of two samples, and takes the same ratio of linear

interpolation for each of the input values and labels, as shown in the following equation.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

21

{
𝑥̃ = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗

𝑦̃ = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗
,

where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) represent the input values for the 𝑖-th and 𝑗-th samples, and 𝜆 is

the mixing ratio sampled from the beta distribution. Mixup was chosen as the subject of this

study because of its versatility and because it can be used for many numerical data, including

not only images but also time series data, and therefore, the impact of improving the Mixup

method would be significant.

An improved version of mixup so that it can also be performed in a hidden layer of a neural

network is called manifold mixup [17], but both mixups generate samples only in a localized

region of the data distribution, on a line segment between two points, and are inappropriate for

data sets with distributions in which the properties of the points on that line segment vary

nonlinearly.

The Feature Combination Mixup (FC-mixup) proposed in this study [16] is a method of

mixing samples in a different way than conventional mixups, and is outlined in Figure 3.4.

Suppose that two samples A and B in the same minibatch output the features 𝑍A and 𝑍B in a

randomly selected layer. 𝑑 is the total number of features in that layer, FC-mixup randomly

extracts and combines 𝑑𝜆 features from 𝑍A and 𝑑(1 − 𝜆) from 𝑍B and generates a new

sample 𝑍X. Since the number of possible combinations is large for a single value of 𝜆, different

data can be generated depending on the random number, and thus samples can be generated

over a wide range of the data distribution. FC-mixup is expressed as follows, so 𝑍A and 𝑍B are

mixed so that this equation is satisfied.

|𝑍A ∩ 𝑍X| = d𝜆

Figure 3.4 Overview of FC-mixup

This technique of generating new data by combining the parts of two data sets is also found

in Puzzle Mix [18], but the target is limited to the input image. A similar technique is used in

Adversarial mixup resynthesis [19], but it is limited to use in autoencoders, while FC-mixup is

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

22

designed for more general use.

In our experiments, we used several multi-class classification datasets to compare the

classification accuracy of the test data between the conventional method (no data augmentation,

mixup at the input layer [15], Manifold Mixup [17]) and the proposed method (FC-mixup, Hybrid

method). MNIST, CIFAR-10, CIFAR-100, and SVHN were used for the data. Models used were a

multilayer perceptron (MLP) with one intermediate layer, a small convolutional neural network

(CNN) and ResNet18. In addition to the full-size data, experiments were conducted on reduced

data with 1,000 randomly selected samples. Means and standard deviations in five trials with

different initial values were obtained and compared.

Table 3.1 shows the results, with boldface letters representing the highest accuracy. The

results show that the proposed method FC-mixup (channel-wise) produces the highest accuracy

in many cases; it outperforms existing methods such as Manifold mixup and CutMix [20], and

the results demonstrate the high performance of FC-mixup. Since it is a versatile data

augmentation, the use of FC-mixup in addition to Manifold mixup is considered to be practically

useful.

Table 3.1 Comparison of test accuracy on multi-class classification data

 Feature Combination Mxup

The FC-mixup proposed in Section 3.3.1 was that samples can be mixed per unit for MLP and

per channel for CNN. However, for CNNs, it is also possible to mix samples per pixel. Channel-

wised FC-mixup is called FC-channel, and pixel-wised FC-mixup is called FC-pixel. Figure 3.5

shows the difference between them. In FC-channel, each sample channel is combined to make a

new sample channel, whereas in FC-pixel, each sample pixel is combined to make a new sample

pixel. The selection of pixels to be mixed in FC-pixel is the same for all channels.

The results of visualizing the samples generated by Manifold mixup and the two FC-mixups

are shown in Figure 3.6. It shows the feature maps generated by mixing the two samples at some

intermediate layer, and although each sample has multiple channels, three of them are taken up

and shown. From these results, it can be seen that the feature maps generated by the Manifold

mixup and the two FC-mixups are very different. When Manifold mixup is used, an image is

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

23

generated by superimposing the two samples. When FC-channel is used, it can be seen that for

each channel, a feature map from one of the original two samples is employed. In this example,

the feature maps of Sample 2 for ch1, Sample 2 for ch2, and Sample 1 for ch3 were used to

generate a new image. When FC-pixel is used, the image of each channel appears to be

significantly deformed because a new feature map is generated by adopting pixels from either

sample.

Figure 3.5 Two types of FC-mixups in CNN

Figure 3.6 Visualization of feature maps generated by each mixup

 Hybrid Use of Mixup

To increase the diversity of the generated data, we consider the Hybrid method, which

combines FC-mixup and Manifold mixup [17]. Here, two hybrid methods are possible, as shown

in Figure 3.7. Hybrid 1 is a method in which Manifold mixup and FC-mixup are applied separately

!"#$%&'(

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

24

to the same two samples, the images obtained are multiplied by 0.5, and then added together.

The Hybrid 2 method first applies FC-mixup to generate images, and then mixes two of the

generated images by using Manifold mixup.

FC-channel and FC-mixup by themselves and in two different Hybrid methods were

compared with the highest accuracy of the existing methods. The results in Table 3.2 show that

the proposed method has higher accuracy than the existing methods; the Hybrid method did not

always have the highest accuracy, and which FC-mixup was optimal depended on the dataset,

model, and other conditions.

Figure 3.7 Proposal of two Hybrid methods

Table 3.2 Comparison of test accuracy between multiple FC-mixup methods and existing methods

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

25

3.4 Efficient data augmentation policy search using Affinity and Diversity

 Affinity, Diversity

There are numerous methods for data augmentation, and each method has its own

hyperparameters. Therefore, determining an appropriate augmentation policy requires a lot of

training, which is computationally expensive. In this study, we have developed a new method to

reduce the computational cost of augmentation policy search.

In general, the search for appropriate augmentation policies is performed using validation

accuracy, but in this study, we focused on Affinity and Diversity, indicators proposed for data

augmentation [13]. As shown in Figure 3.8, Affinity represents the degree of overlap between

the original and extended data distributions and is calculated by the following equation:

𝐴𝑓𝑓 ≔ 𝐴(𝑚, 𝐷𝑣𝑎𝑙
′) / 𝐴(𝑚, 𝐷𝑣𝑎𝑙)

where 𝐴(𝑚, 𝐷𝑣𝑎𝑙
′) represents the accuracy of validation data with data augmentation in a model

trained with clean data, and 𝐴(𝑚, 𝐷𝑣𝑎𝑙) represents the accuracy of clean validation data in the

same model. Diversity represents the spread of the data distribution after the augmentation and

is calculated by the following equation:

𝐷𝑖𝑣 ≔ 𝐸𝐷𝑡𝑟𝑎𝑖𝑛
′ [𝐿𝑡𝑟𝑎𝑖𝑛] / 𝐸𝐷𝑡𝑟𝑎𝑖𝑛

[𝐿𝑡𝑟𝑎𝑖𝑛]

where 𝐸𝐷𝑡𝑟𝑎𝑖𝑛
′ [𝐿𝑡𝑟𝑎𝑖𝑛] represents the value of the error function of the model trained using

training data with data augmentation, and 𝐸𝐷𝑡𝑟𝑎𝑖𝑛
[𝐿𝑡𝑟𝑎𝑖𝑛] represents the value of the error

function of the model trained using clean training data.

(a) Difference in distribution according (b) Relationship to test accuracy

to the size of the metric

Figure 3.8 Characteristics of affinity and diversity

It is known that test accuracy is higher when training with a data augmentation policy that

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

26

increases both Affinity and Diversity values, as shown in the distribution framed in red in Figure

3.8(a). This can be confirmed in the results shown in Figure 3.8(b). In this figure, each point

shows the results of trainings using data augmentation with different methods and

hyperparameters. The higher accuracy in the upper right portion of the figure can be seen,

indicating that both affinity and diversity are important.

 Shortening the search phase with a metric considering Affinity and Diversity

To reduce the computational cost of searching for data augmentation policies, this study

proposes shortening the search phase, i.e., reducing the number of training steps for search. This

can easily reduce the computational cost, but when using validation accuracy, the problem arises

that the test accuracy cannot be well estimated with a short number of training steps. Therefore,

we propose a metric 𝑎𝑓𝑓 × 𝑑𝑖𝑣𝛼 × 𝑣𝑎𝑙 that takes into account affinity and diversity. This is a

metric that becomes large when affinity, diversity, and validation accuracy all take large values.

Since diversity is an unstable metric in the early stages of training, as described below, 𝛼, which

takes values between 0 and 1, is used to reduce the influence of diversity.

The training method using this proposed metric is shown in Figure 3.9. With the

conventional method, the search phase is carried out to the final step, and the test accuracy is

estimated using the validation accuracy. On the other hand, in this method, after a short search

phase, the proposed metric is evaluated by calculating affinity, diversity, and validation accuracy,

and the data augmentation policy with the largest value is selected. That augmentation policy is

used for training until the final step. This approach reduces the overall computational cost by

shortening the search phase, in which multiple data augmentations are used to learn individually.

For example, if the overall learning is 200 epochs and the search phase in this method is 5 epochs,

roughly speaking, the computational cost could be reduced by a factor of 0.025.

Figure 3.9 Summary of the proposed method

Experiments were conducted to test the effectiveness of the proposed method using multiple

datasets. The model used was ResNet50 for ImageNet and ResNet18 for other datasets. Nine

data augmentation methods, PatchGaussian [21], FlipLR, FlipUD, Crop, Cutout, Crop+FlipLR+

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

27

Cutout, Rotate, ShearX, and ShearY, each with multiple hyperparameters, were used, with a total

number of 100 data augmentations for ImageNet and 216 for the other datasets. After a search

phase of 5 epochs, a data augmentation policy is selected using different metrics. The data

augmentation was applied to the training until the final epoch (100 epochs for ImageNet and

200 epochs for the other datasets) and the test accuracies were compared. The experimental

results are shown in Table 3.3. The results show that the proposed metric (Proposed) is able to

select an augmentation policy that yields higher test accuracy compared to the case where only

validation accuracy is used (Val acc). Ground truth is the most accurate result among all the data

augmentations trained until the last epoch. By taking affinity and diversity into account, the

proposed method was able to estimate the test accuracy with good accuracy even in a short

search phase.

Table 3.3 Comparison of test accuracy of trainings with selected augmentation policies

for each metric

The correlations between epoch 5 and epoch 200 for each metric using CIFAR-10 are shown

in Figure 3.10. Each point represents the result of training with different data augmentations.

These results show that Affinity is highly positively correlated. This is thought to be because the

calculation of affinity requires a model trained with clean data, so that in the early stages of

training, the model is not unstable, with large changes in accuracy due to data augmentation.

Conversely, the calculation of diversity requires learning with data augmentation, and the values

of the error function in the early stages of training do not necessarily reflect the final test

accuracy values well, resulting in smaller correlations. This is also the reason why the influence

of diversity is reduced in the proposed metric.

In summary, this study addressed the problem of high computational cost in data

augmentation policy search. By significantly shortening the training step in the search phase and

using an metric that takes into account affinity and diversity in addition to validation accuracy,

!"#$%&%'

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

28

we were able to reduce the overall computational cost while performing augmentation policy

search with high accuracy.

Figure 3.10 Correlations between epoch 5 and epoch 200 for each metric in the study using CIFAR-10

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

29

4 Debug-Testing of DNN Software

In the initial development stage of Deep Neural Network software (DNN software), we ensure

that the required functions and prediction performance are achieved through iterative trial-and-

error processes, in which three viewpoints (elaborating and refining requirements, preparing

datasets for training, and selecting appropriate machine learning models) are considered. This

trial-and-error process corresponds to debugging in conventional program development. In the

case of DNN software, the debugging activities involve generating datasets for debug-testing,

monitoring the training and learning status, and identifying and removing root causes that

hinder the fulfilment of requirements. In the following, we will report on a debug-testing method

investigated in FY2020, discuss the experimental results obtained, and summarize our future

plans.

4.1 Direct cause of failure

A standard method of supervised DNN learning involves two types of programs: training (or

learning), and prediction (or inference). When training data is given and a learning task to

achieve is made clear, a learning model for the target DNN software is selected, and some design

decisions on the method used in the training and learning process is fixed. If we use available

open-source machine learning frameworks, we may set up several parameters of the framework.

The next step is to construct training dataset. Then, we run the training/learning program

(possibly provided by the machine learning framework) with the training model and training

dataset as input, and derive a trained DNN model as a computation result. More precisely, the

training/learning program searches for a set of weight parameter values that define the trained

DNN model uniquely. This trained DNN model defines behavior of the prediction/inference

program.

From a user's point of view, a prediction/inference program is the entity to use. In the case

of a classification learning task, for example, the program calculates certainty levels of

probabilities of classification results for an input data. By examining the output results, we can

determine whether the DNN software works as intended. When the program does not produce

results as expected, we localize possible fault locations and remove them. In other words, we

conduct debugging.

A failure may be occurred due to a flaw somewhere in the information used in the execution

process of the training/learning program, either in the training dataset, the training model, the

learning mechanism, or their combinations. However, direct causes of failure in prediction/

inference results are attributed to the trained DNN model or set of obtained weight parameter

values. While a root cause of failure is somewhere and often not known, the failure is attributed

to a defect in the weight parameter values or the trained DNN model. Thus, from users' point of

view, a certain distortion of the trained DNN model seems a direct cause of the failure [22]. A

method to measure such distortion degrees is needed regardless of the root causes.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

30

In this chapter, we investigate whether we can detect faults in DNN software with an internal

metric to measure such distortion degrees of trained DNN models. The weight parameter values

in the DNN models are the output of the training/learning program, but there is no direct way to

check its validity, because those expected weight parameter values cannot be known in advance.

If such expected parameter values were known, training/learning could be skipped. We can just

use those known values, as embedded in a trained DNN model, to implement a prediction/

inference program.

4.2 Internal indices

This section first introduces the notion of neuron coverage (NC). We consider a learning

model as a network of neurons. Given a threshold, neurons whose output values exceed the

threshold are said to be activated. When the number of neurons constituting the learning model

is N and the number of activated neurons is A, the neuron coverage is defined as the ratio of

active neurons is (NC = A/N). In [23], NC is assumed to be criteria for test coverages of trained

DNN models; the research work investigates how the choice of input data for evaluation affects

NC values.

Figure 4.1 Trained DNN model.

In this chapter, NC is assumed to be used as an internal index [24] to represent distortion

degrees by appropriately choosing the target neurons to be considered. Figure 4.1 shows a

schematic diagram of the trained DNN model. NCs are defined for the neurons in the final stage

of the middle layer (or the penultimate layer as shaded gray), but not for all the neurons in the

trained DNN model as in [23].

In general, in machine learning techniques, this penultimate layer is often considered to hold

meaningful information. For example, in the case of an image classification task, the early stages

of the model is responsible for the correlation analysis (analysis of patterns of pixel values),

which plays a specific role in algorithms such as image recognition, and their calculation results

are summarized in the penultimate layer. In this chapter, we assume that direct causes of defects

are manifested in this internal layer. Furthermore, various statistical indices can be derived

based on NC values of this layer. We will investigate, through experiments, what derived index is

appropriate depending on test objectives to be investigated.

Classification Algorithm

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

31

4.3 Experiments: method and results

We present the results of several experiments and discuss the usefulness of the internal or

derived indices mentioned in the previous section. First, we show the results of comparative

experiments when a training/learning program (or a learning framework) has faults in it. In the

following, BI is the training/learning program which is a bug-injected version of a probably

correct program PC.

Figure 4.2 depicts the accuracy (the percentage of reconstructed correct answers) for a test

dataset. In the experiments, a classical fully-connected network is chosen as the learning model,

and different number of neurons are placed in the middle layer, which implies that each model

is of different structural capacity. When we have a sufficient number of neurons (50 on the

horizontal axis), there is no significant difference in the accuracy between PC and BI. Thus, it is

difficult to distinguish between the PC and BI solely by examining their accuracy values, and thus

the presence or absence of a defect cannot be identified. In addition to this finding (Figure 4.2),

the results of an experiment to systematically investigate the situation further (Figure 4.3) are

presented below.

Figure 4.2 Learning models of different capacities.

Figure 4.3 Relationship with internal indices

Figure 4.3 plots values of the internal index (activated neurons or neuron coverage) on the

vertical axis. Their absolute values, for example, of 10 for BI and 30 for PC are both around 0.7,

making it impossible to distinguish between BI and PC if we do not take into account the

structural capacity. The indices are not usable to examine the activated states of neurons.

A
c
c
u

ra
c
y

Structural Capacity

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50 60

PC

BI

A
c
ti
v
a
te

d
 N

e
u

ro
n

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

PC

BI

Structural Capacity

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

32

Therefore, we will study if there is an appropriate indicator to be derived from the internal index

of NC. As a set of data (a sample), in the test dataset, leads to a collection of neuron coverages,

we can obtain some statistics from the sample such as the mean μ and variance σ2, and

calculate σ/μ . Figure 4.4 shows the case where this derived index σ/μ is used on the

horizontal axis. From the values on the vertical axis, we can find out which leaning model has

which value by referring to Figure 4.3.

Figure 4.4 Derived index

Figure 4.4 shows that we can distinguish between the PC and BI. Although the internal index

cannot distinguish between the PC and BI with different capacities (Figure 4.3), a derived index

of σ/μ can discriminate between the PC and BI. We can see that the neuron coverage basically

contains a piece of useful information.

Next, Figure 4.5 is a scatter plot of classification probability using corrupted data for the

evaluation; the horizontal axis refers to the classification output by the BI and the vertical one

by the PC.

Figure 4.5 Classification certainty for corrupted data.

In Figure 4.5, a △ represents an output value for corrupted data, which is supposed to be

distributed on the dotted line passing through the origin, if we assume that the PC and BI output

the same value for the same data. In fact, it can be seen that □ selected from the test dataset

0.9

0.92

0.94

0.96

0.98

1

0 0.1 0.2 0.3 0.4

PC

BI

 / µ p

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Probability of BI

P
ro

b
a

b
ili

ty
 o

f
P

C

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

33

(without any corruption) mostly arranged on the dotted line. On the other hand, corrupted data

(△) are distributed along the solid line, indicating that the PC is a better classification certainty

than the BI. It implies that the BI, containing bugs in it, is less robust, although the accuracy

remains the same as that of PC (Figure 4.2).

The following experiment confirms that differences in robustness can be detected by using

an internal index (Figure 4.6).

Figure 4.6 Differences in internal indices

The corrupted data described above were input, and the internal index for each input was

plotted on the horizontal axis. The □ distributed in a group on the right side shows the results

of PC, and the ◇ distributed in a group on the left side shows the results of BI. The scatter plot

shows that (1) the value of the internal index of PC is large, and (2) the correlation between the

internal index and prediction probability (certainty of classification) is negligible (0.033). Next,

we calculate σ/μ, which is 0.0876 for PC and 0.2183 for BI. Figure 4.6 shows results that

corrupted data affect the robustness, and that the value of σ/μ is considered to have

correlations with the robustness.

Next, we conducted experiments to investigate how distorted training data affect the trained

DNN model. We plotted the accuracy for a test dataset common to all the cases. Thus, differences

in the vertical axis indicate a certain difference (distortion degree) in the training dataset used

for obtaining the trained DNN model (Figure 4.7).

Figure 4.7 Differences in training datasets.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

34

Figure 4.7 shows the two independent series for the PC (□) and BI (◇). From top to bottom

in a series of each measured points (from better to worse accuracy), a training dataset with a

larger distortion is used. Because the test dataset is common, the data shift of the test data is

relatively larger as the distortion degrees in the training data is larger. Furthermore, the accuracy

decreases as the shift becomes large. Figure 4.7 also shows that the value of the horizontal axis

(σ/μ) is clearly different between the PC (□) and BI (◇). It can be confirmed that the accuracy

and the robustness suggested by the σ/μ values are two independent perspectives.

From the above (Figure 4.7), the distortion in training dataset can be examined by the

method based on the accuracy. As is done in practice, the method based on the accuracy is useful

when checking the training dataset quality. On the other hand, if there is a possibility that other

factors such as faults in a training/learning program are involved (multiple defects are assumed),

it is desirable to examine the values of the internal and derived indices (σ/μ) at the same time.

4.4 Related work

Neuron coverage (NC) is a simple quantitative measure introduced in DeepXplore [23] as a

test coverage metric. In conventional software testing, test coverage is defined in terms of the

basic block of program codes, which is the statements executed by a given test input data. A

program is represented as a Control Flow Graph (CFG) whose nodes refer to executable

statements. In the simplest case, the criterion is whether or not a node in the CFG is contained

in an execution path induced by an input test, i.e., whether or not the statements are executed.

As a DNN model is represented as a network, a kind of graphs, metrics similar to those for CFG

can be introduced. The neuron coverage concerns whether neurons located at nodes are

activated (output values of these neurons exceed a specified threshold), which is comparable to

the C0 criterion defined on the CFG. DeepXplore assumes that high NC values refer to the

situations where high percentage of neurons are exercised by input data, and discusses how to

generate new test input data to increase the NC values.

Neuron coverage would be a straightforward idea analogous to the conventional test

coverage criteria. Later, satisfying the criteria, to achieve 100% in terms of NC, is found

empirically not difficult. New metrics are proposed to take into account correlations among

multiple neurons or those in different layers [25], which may be comparable to more elaborated

coverage metrics, such as C1 or the others, in conventional software testing.

The original NC is simple and easy to use as a metric to guide or control automated test

generation processes. Usually, a classical data augmentation method picks up a seed data, from

which a series of new data is to be generated by pre-defined data transformation algorithms.

New test data are successively generated until the accumulated NC values is saturated. When

reached the situation where no increase in the NC is seen, the generation method switches a seed

data to new one and continue the process [26]. The classical data augmentation method can be

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

35

replaced by other approaches such as test input generation based on GAN [27]. Test generation

method using GAN with a help of NC is reported in [28]. Although it is a simple metric, NC is now

considered as a practical criterion to control the automated test generation process (coverage-

guided test generations).

Some of early works on testing pre-trained DNN models adapt application-specific

properties as software test oracles; the DNN models for regression tasks in the auto-pilot car

application [26][27] use the calculated steering angle as the oracle. There is also a research work

[29] to investigate whether test inputs to increase the NC values are useful for detecting faults.

The usefulness of NC is dependent on what are considered failures. The work [29] also indicates

that the correlation between NC and external indices such as the accuracy is weak. In this chapter,

based on this observation that the correlation between the two is weak, an internal index based

on the NC is used for the test, which is not contradictory to the discussion in [29], but rather in

the same direction. Note that the test coverage is a criterion for terminating testing, while

detecting faults depends on whether the test input data executes corner cases. These two notions,

the test coverage and corner cases, refer to different aspects. In fact, it has been reported that

the enhancement of coverage does not necessarily leads to the improvement of the efficiency of

fault detection in conventional software testing. The same findings would be applicable to cases

of DNN testing.

In this chapter, we use the NC value as a simple test index, from which a sort of distortion

degrees in trained DNN model is derived [22][24]. Our approach is based on a view that faults

in DNN models appear as inappropriate NC values, whereas existing works use NC as a criterion

for the test coverage. In our experiments, we were able to examine the reliability of the training

and learning programs and the robustness of the trained DNN models. These are two primary

concerns in debug-testing.

4.5 Conclusion

In this chapter, we used an internal index based on the neuron coverage (NC) defined on the

penultimate layer for representing a sort of distortion degrees in trained DNN model. The NC is

a scalar and easy to measure, and thus can be used as a light-weight test index. It, however,

discards the information about the individual activated neurons, and thus lacks useful

information. In fact, Kim et al. [30] proposes a method to estimate the distribution of activated

neuron and to discuss the usefulness of input data for testing. Distribution on such neuron values

may be considered to have rich information. In future, we will study how to debug training

dataset by making use of such distribution information.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

36

5 Debugging and Testing of Training Data

5.1 Three Problem Settings

In early stages of software development, in which programs are constructed to employ Deep

Neural Networks (DNNs) [31], debugging and testing is performed to ensure that the core DNN

components behave as expected. This is the process of feeding appropriate data to the DNN

components and checking whether the predicted output is exactly what is expected. If the output

is faulty in some ways, the DNN component under test contains a defect. The purpose of

debugging is to identify and remove such unknown defects.

Defects in DNN components are the direct cause, but not the root cause, of failures. In the

standard method for building DNN components [32], three distinctive components are basically

involved: (a) the machine learning infrastructure, (b) the training model (a template of the DNN

model), and (c) the training data. The root cause is one of them or their certain combinations

leading to the failure that the DNN component exhibits. The problem setting of the inspection

differs depending on where the root cause is assumed [33].

 The basis of DNN component construction is to make use of a training dataset consisting of

a huge number of training data and derive the information inherent in those data by means of

statistical methods so as to obtain a DNN model (a nonlinear function) inductively. In a naive

way, we may examine the DNN model to identify root causes. However, since the DNN model is a

nonlinear function to exhibit some functional behavior, the software testing method using

indirect test oracles is often employed; we feed evaluation data to the DNN model and check

whether output results are valid or not [34].

 In the case (a) above, the core of the machine learning infrastructure is a numerical program

that solves an optimization problem, and the metamorphic testing method is known to be useful

[35]. In the case (b), the learning model is not obviously flawed. It is to find an optimal or sub-

optimal learning model for the target machine learning task, which has been, in a sense, one of

the main challenges of the DNN technology [31]. In this chapter, we discuss the case (c), i.e.,

debugging and testing methods of training data.

5.2 Debugging Problems of Training Data

Debugging and testing of training data is to revise (add or delete) the training data so as to

obtain a DNN model that exhibits the intended functional behavior. This view is based on the

observation that the bias of the training data affects much the trained DNN model. In the

following, we specifically consider the debugging problem of training data for supervised

machine learning classification tasks.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

37

 Model Accuracy and Model Robustness

In the supervised task of classifying input data into 𝐶 categories, a datapoint 𝑧 is a tuple

(𝑧 = 〈𝑥, 𝑦〉) consisting of two types information, a multidimensional vector 𝑥 and its correct

answer tag (or simply a label) 𝑦 (see Figure 5.1). The DNN model, derived from a given

training dataset 𝑆 (𝑆 = {𝑧(𝑘) | 𝑘 = 1, … , 𝑁 }), is inspected against input evaluation data 𝑥. Its

output is a 𝐶 dimensional classification probability vector 𝑃𝑥 corresponding to the data 𝑥. If

𝑃𝑥[𝑗] (the 𝑗-th component of 𝑃𝑥), the component with the largest value 𝑗, is equal to y (𝑦 =

argmax(𝑗∈[1,𝐶])𝑃𝑥[𝑗]), then the DNN model is considered to return a correct answer. In this case,

the multidimensional vector 𝑃𝑥 , in particular, the probability of the 𝑗-th component 𝑃𝑥[𝑗], is one

of the good indicators of the model accuracy for the data 𝑥. For a collection of evaluation data

𝐸 (𝐸 = {〈𝑥(ℓ), 𝑦(ℓ)〉 | ℓ = 1, … , 𝑀 }), Accuracy is the number of correct answers (percentage of

correct answers) for the collection. In addition, the variability of the probabilities of the

classification categories (sometimes referred to as Gini Impurity) is an indicator of the model

accuracy as well.

The accuracy for the training dataset 𝑆 and the one for the other dataset 𝐸 , different

dataset from 𝑆, are compared. While the accuracy for 𝑆 is good, the accuracy is sometimes

worse for 𝐸. This phenomenon is known as overfitting to the training dataset. Usually, both 𝑆

and 𝐸 are constructed from one large data pool 𝐷, and are considered as different samples

following the same data distribution; 𝐸 in this case is sometimes called a testing dataset as

compared with the training dataset of 𝑆. When there is no overfitting where the accuracies are

not much different each other, the DNN model is considered to exhibit good generalization

performance.

In the training data debugging problem, the evaluation data 𝐸 may be selected from a

dataset other than 𝐷. For example, in positive testing, where the goal is to confirm that the

system exhibits the expected behavior, as in the evaluation of generalization performance, we

can choose 𝐸 from 𝐷 , in which 𝐸 is different from 𝑆 . However, to test the behavior in

exceptional situations, we may choose a dataset 𝐹 for the evaluation that is not included in 𝐷.

Model accuracy, measured with the percentage of correct answers, is not a good indicator for 𝐹.

The evaluation criterion is model robustness, which expresses how the prediction probability is

decreased depending on how much a data in 𝐹 is deviate from data in 𝐷 or 𝑆.

In the development in practice, if the expected prediction performance is not achieved for a

given 𝐷, new data is collected and the training data itself is revised. Then, the DNN components

are derived using the new training dataset, namely in an iterative manner. Moreover, during

testing, we evaluate the model accuracy and model robustness in view of both positive and

exceptional testing.

 Memorization of Training Data

Overfitting or overlearning significantly affects the prediction performance (the model

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

38

accuracy and model robustness) of DNN models. Therefore, basic machine learning methods

have been studied extensively to mitigate those problems; the study includes regularization or

dropout [36]. In spite that such methods are adopted, the expected prediction performance

cannot be obtained if the training dataset is inadequately biased. The debugging problem of

training data is to improve the prediction performance of DNN models by revising the training

dataset. Simply, it is to eliminate the inappropriate bias. However, it is difficult to evaluate the

degree of bias as well as the appropriateness or inappropriateness of the bias.

One traditional approach to evaluate the bias of the training data (sample) is to examine

statistical characteristics of the sample. For example, given that 𝑆 = {〈𝑥(𝑘), 𝑦(𝑘)〉 | 𝑘 = 1, … , 𝑁 } ,

let 𝑆𝐶 = {〈𝑥, 𝑐〉 | 〈𝑥, 𝑐〉 ∈ 𝑆 and 𝑐 = 1, … , 𝐶 } where 𝑐 is a correct answer tag. If the sizes of 𝑆𝐶

are equal in size, then we may say that there is no bias among 𝑆𝐶 from the viewpoint of the

correct answer tag. However, each 𝑆𝐶 follows some data distribution 𝜌𝐶 and we don't know

whether 𝑆𝐶 is sampled faithfully in regard to 𝜌𝐶 . To check this, we need to know 𝜌𝐶 , however,

the data 𝑥 is multidimensional, and such a multidimensional data distribution is not easy to

estimate.

Alternatively, the prediction performance of DNN models is investigated by testing results

with input evaluation data. DNN models derived from the same training data may exhibit

different prediction performance, depending on the method of the machine learning. In other

words, it is not enough to examine the statistical characteristics of the training data for the

purpose of debugging the training data, but it is also necessary to consider how the bias of the

training data is reflected in the trained DNN model.

The relationship between DNN models and training data bias can be discussed in terms of

the DNN models remembering the labels of the training data. Now, when the training data 𝑆

contains a datapoint 〈𝑎, 𝑡〉 (〈𝑎, 𝑡〉 ∈ 𝑆), we can construct 𝑆′ so that the 〈𝑎, 𝑡〉 is removed from

the training data 𝑆 (𝑆′ = 𝑆 ∖ {〈𝑎, 𝑡〉}). Let each DNN model obtained by training with either 𝑆

or 𝑆’ be 𝑀 or 𝑀’ respectively. Then, the result, 𝑃𝑎 for 𝑀 or 𝑃𝑎
′ for 𝑀’, is obtained for the

common input data 𝑎. If the classification result 𝑡 for 𝑃𝑎[𝑡] is very likely and 𝑃𝑎
′[𝑡] is less

likely, then 𝑀 is said to memorize the datapoint 〈𝑎, 𝑡〉 used as one the training data. From this

definition, we can see that the DNN model memorizes the training data in the overfitting

situation, where 𝑃𝑎[𝑡] is apparently more likely than 𝑃′𝑎[𝑡].

For DNN models, it is known that the Membership Inference is possible. The problem is to

find out if a datapoint 〈𝑥, 𝑦〉 (〈𝑥, 𝑦〉 ∈ 𝐷) was included in the training dataset (〈𝑥, 𝑦〉 ∈ 𝑆) just

from the information obtained by feeding data to the trained model, 𝑀𝑆(𝑥). Black box methods

make use of the classification probability vector 𝑃𝑥 [37], or white-box methods use the

information of the loss function ℓ(𝑌(𝑊; 𝑥), 𝑦) calculated in the process of executing 𝑀𝑆(𝑥)

[38], where 𝑊 is the training parameter or weight and 𝑌(𝑊; 𝑥) is the internal representation

of the prediction for the input 𝑥.

Intuitively, Membership Inference method is based on the observation that the distribution

of 𝑃𝑥 or ℓ(𝑌(𝑊; 𝑥), 𝑦) is different depending on whether the datapoint 〈𝑥, 𝑦〉 is included in

the training dataset 𝑆 or not. Furthermore, these differences in the distributions are somehow

attributed to the memorization of training data including overfitting cases [38]. Thus, the

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

39

approach to mitigate the threats of Membership Inference is to remove those data, that are

memorized easily, from the training dataset, in addition to employing a machine learning

method that avoids overfitting [39].

We now examine the situation involved with the memorization of training data. Consider a

classification problem as in Figure 5.1; we assume 𝑎 ≠ 𝑏 whereas 𝑡 = 𝑢 . Figure 5.1 (a)

illustrates a situation where the prediction probability of 〈𝑏, 𝑢〉, a training data moved away

from 〈𝑎, 𝑡〉, decreases as the distance between them becomes large. Figure 5.1 (b) shows that

removing that datapoint 〈𝑎, 𝑡〉 from 𝑆 does not significantly affect the prediction probability

of the data 〈𝑏, 𝑢〉 when the training data are dense in 𝑆. In other words, the removed training

data is not memorized in that it does not significantly affect the prediction results. Figure 5.1 (c)

represents a situation where the training data are sparse. Contrary to Figure 5.1 (b), it represents

that the influence becomes large and is firmly remembered. Such outlier data significantly affects

the predictive classification performance of the DNN model.

Finally, we consider the Membership Inference viewed from the training data debugging

problem. In the situation where training data are memorized, the distribution of either 𝑃𝑥 or

ℓ(𝑌(𝑊; 𝑥), 𝑦) is very different depending on whether the datapoint is included in the training

dataset 𝑆 or not. The Membership Inference method makes use of the fact that the predictive

performance for 𝑧′, far from training 𝑧 datapoints, is poor. In other words, we can think of the

Membership Inference as a test of model robustness; the phenomenon of training data

memorization is related to model robustness.

(a) Predicted probability in the neighborhood (b) Dense region (c) Sparse region

Figure 5.1 Training data placement and prediction certainty.

Here, we refer to the schematic situation in Figure 5.1. Removing the dense data shown in

Figure 5.1 (b) would have little impact on the model accuracy. On the other hand, removing the

data in a sparse region as shown in Figure 5.1 (c) would improve model robustness, but would

reduce model accuracy in the neighborhood because there would no longer be data to support

their predictive classification results. Alternatively, adding new data in the neighborhood

without removing this datapoint will make the region dense and improve the local model

accuracy. Therefore, detecting outliers in the training data set 𝑆 is important for debugging

dataset.

Figure 5.1 schematically illustrates that the predictive classification performance of the input

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

40

data is affected by the location relationship with the training data. However, it does not say how

the location relationship is defined, i.e., from what aspects of the data, the location relationship

is defined. Conversely, now the question is how the location relation should be defined when

discussing the difference in prediction classification performance; the outlier detection problem

will become clear when such criteria are precisely defined.

5.3 Outliers and Neuron Coverage

We consider outlier detection methods for the purpose of training data debugging.

 Outliers in Training Data

The debugging problem of training data is to find out outliers in the training dataset and to

decide how to deal with the outliers according to the purpose of the DNN model under

development. How we handle the outliers is related to the requirements specification of the DNN

model. Thus, the general discussion of training data debugging may be limited within

establishing a technique for outlier detection.

In general, outliers are data that have different characteristics from the data that make up

the majority, and whether or not they are outliers is defined based on the data distribution

(statistical data model) that the collection of target data exhibits [40]. For example, if the

probability density function of the data distribution is known, then we can check whether the

data are outlier or not based on the likelihood of the data.

In a naive way, we consider whether it is an outlier or not based on the empirical distribution

of the training data. However, the training data is a multi-dimensional vector, and it is difficult to

know the empirical distribution in a compact form. For example, it is difficult to apply methods

such as Kernel Density Estimation, and as a result, the outlier detection method based on

likelihood is not practical. Alternatively, analysis methods similar to Combination Testing, which

is known in the field of software testing, may be applied. By selecting components (features) that

are considered having a large impact on the empirical distribution and focusing on such

representative dimensions, we may conduct analysis as an approximate of the case on the whole

empirical distribution. While practically applicable, outliers are rare by definition, and the

effectiveness of this approximate method is questionable.

For a slight change of perspective, the robustness radius of the standard method of analyzing

model robustness [41] is considered. For two datapoints 〈𝑥, 𝑦〉 and 〈𝑥′, 𝑦′〉 and the predictive

classification results for each of the outputs 𝑃𝑥[𝑦] and 𝑃𝑥′[𝑦′], let the robust radius 𝛿 be the

tolerance level 𝜀 of the difference between the outputs; for a given 𝜀, the robust radius is the

maximum difference of input data that satisfies 𝛿 (| 𝑃𝑥[𝑦] − 𝑃𝑥′[𝑦′] | ≤ 𝜀 when | 𝑥 − 𝑥′ |𝑝 ≤

𝛿). Here, we define the difference of input data in terms of 𝐿𝑝-norm. In a naive way, for a given

𝜀 for given input data, we consider that the model robustness is good if the robustness radius 𝛿

is large. However, the calculated radius 𝛿𝑝 is dependent on the choice of the norm 𝐿𝑝. While

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

41

the definition of model robustness by the robust radius is strict, the analysis in the space of input

data requires further discussion or interpretation of whether the norm used is appropriate or

not, which complicates the problem.

We consider now how the training data 〈𝑎, 𝑡〉 affect the prediction results of the other data

〈𝑏2, 𝑢2〉 that are classified to different classification categories (𝑡 ≠ 𝑢2) (see Figure 5.1 (a)). The

two datapoints have different classification categories and can be assumed to be far apart in the

input data space. We assume that the training dataset 𝑆 contains 〈𝑎, 𝑡〉 and let 𝑆’ be the one

to be removed 〈𝑎, 𝑡〉 from 𝑆. Further, let the DNN models obtained from 𝑆 and 𝑆’ be 𝑀 and

𝑀’ respectively, and let the predictive classification results for the data 〈𝑏2, 𝑢2〉 be 𝑃𝑏2 and

𝑃𝑏2
′ . With the method of Influence Functions, which analyzes how 𝑆 and 𝑆’ affect the error

function, we are able to know that there exists 〈𝑏2, 𝑢2〉 such that the values of 𝑃𝑏2[𝑢2] and

𝑃𝑏2
′ [𝑢2] are different [42]. It shows that the presence or absence of the training datapoint 〈𝑎, 𝑡〉

affects the classification probability of 〈𝑏2, 𝑢2〉. Therefore, it is difficult to obtain the desired

information by analyzing the differences in the input data space (𝑎 ≠ 𝑏2) .

From the above, we can see that it is difficult to systematically detect the desired outliers by

analyzing a collection of training data in the input data space. The reason for this is that model

accuracy and model robustness are affected not only by the training data but also by various

factors involved in the training process, such as the machine learning method. However, we do

not claim that the analysis in the input data space is completely ineffective. Such an analysis

would give us a vague idea of the empirical distribution of the training data.

In this chapter, we think that even if the features of the input data space are related to model

accuracy and model robustness, they are not appropriate as a systematic training data

debugging method. We will study systematic methods for detecting outliers in training data.

 Active Neurons

Neuron coverage is defined as the ratio of active neurons to the number of target neurons

considered [43]. 𝑀𝑆(𝑥) denotes the situation where the input signal (of x) propagates through

the DNN model and activates each neuron. When the output of a particular neuron exceeds a

given threshold, we call it active, an active neuron.

Neuron coverage was initially proposed as a coverage criterion for coverage-driven test data

generation [43]. The active neurons for the input data 𝑥 provide a useful information in that

they influence the output results. On the other hand, the neurons not involved in the predictive

inference process, are considered to be inactive. The input data that produce inactive neurons

do not effectively test all the neurons, and then new input test data are needed so that they

further activate the inactive neurons. When a set of input data makes all the neurons active, the

set of test data are considered to reach 100% of the coverage.

After the original proposal in [43], there have been several research works to study the

practical usefulness of the neuron coverage as a test coverage criterion [44][45][46]. In

particular, it has been recognized that 100% of the neuron coverage is not difficult to achieve

and thus is weak as a test coverage criterion, which is similar to the case of the C0 criterion in

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

42

conventional software testing methods.

On the other hand, we may consider that the training was appropriate in the first place,

producing inactive neurons not involved in the predictive inference process. In this case, we can

add new input data to the training data and conduct re-training [43]. This suggests the idea of

using the neuron coverage as a criterion for evaluating the quality of the model 𝑀𝑆 . The

following is a discussion from the viewpoint of the neuron coverage as a model quality

evaluation criterion [47].

In DNN models 𝑀𝑆 for classification tasks, the upstream layers near the input perform

encoding 𝐸′ (Encoding), and is followed by classifying 𝐶′ . Classifying is done after the

encoding (𝑀𝑆 = 𝐶′ ∘ 𝐸′); 𝑀𝑆(𝑥) = (𝐶′ ∘ 𝐸′)(𝑥) = 𝐶′(𝐸′(𝑥)). When the output is a classification

probability vector, we place softmax functions in the final layer (logits) of the output; 𝑀𝑆 =

SOFTMAX ∘ 𝐶 ∘ 𝐸′. Next, we may place a layer of Fully Connected Network (FCN) between 𝐸’

and 𝐶; 𝑀𝑆 = SOFTMAX ∘ 𝐶 ∘ FCN ∘ 𝐸.

In FCN, a neuron in a layer considered is connected to all the neurons in the next layer, thus

the output is swap-invariant, which means that the output is preserved when the neurons are

exchanged within the same layer. Therefore, the neuron coverage may be useful to summarize

the neuron activity in FCN layers. On the other hand, when the constituent neurons play a

specific functional role, such as in SOFTMAX or CNN, it is questionable whether the neuron

coverage, which considers all neurons equally, provides useful information. In fact, two different

definitions are studied for CNNs, and depending on which one is adopted, the value of neuron

coverage is different [48]. In this chapter, we consider neuron coverage for the FCN layer.

A series of experiments are conducted [48] in which training data are systematically

generated by means of a classical data augmentation method and the effects on neuron coverage

are investigated. The results showed that the difference in training data had influenced the

neuron coverages at the 𝐸′ layer, while only a small effect was made on the 𝐶 layers. In addition,

although the testing data are changed, very small differences are observed on the last layer in 𝐶

(Penultimate Layer of the whole model). It implies that the differences in the training data are

reflected in the FCN layer where 𝐸′ = FCN ∘ 𝐸 as introduced early.

In addition, in previous experiments [35][47] in which we have measured the neuron

coverage on the FCN located as the last layer of 𝐶, we observed little correlation between the

classification prediction probability and neuronal coverage. Therefore, the neuron coverage may

be considered to represent an aspect independent of the information contributing to the model

accuracy. If it is found to be correlated with the model robustness, we can expect that the

neuronal coverage on a particular layer is useful as a method to detect outliers for our purposes.

5.4 Experiments and Discussions

We experimentally investigate the relationship between neuron coverage and model

robustness, and discuss whether information concerning neuron coverage is useful for

debugging training data.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

43

 Steps of Experiments

The experiment consisted of five steps, including the preparation work: using the MNIST

dataset, we assumed a learning model of the form 𝑀𝑆 = SOFTMAX ∘ 𝐶 ∘ FCN ∘ 𝐸 . Hereafter, the

MNIST training dataset is denoted as LS (60,000 elements) and the test dataset is denoted as TS

(10,000 elements).

– Step 1: Measure the active neurons derived by 𝐿𝑆 . Let 𝑀 be the trained model

obtained by training 𝑀𝑆 with 𝐿𝑆. Let 𝐴𝑐𝑡𝑥 be the collection of active neurons for the

FCN layer in M generated by the multi-dimensional vector data x（〈𝑥, _〉 ∈ 𝐿𝑆）. If the

number of neurons constituting the FCN layer is denoted as |FCN| , the neuron

coverage is 𝑁𝐶𝑥 = |𝐴𝑐𝑡𝑥|/|FCN|. 𝑁𝐿𝑆 = {𝑁𝐶𝑥 | 〈𝑥, _〉 ∈ 𝐿𝑆} for the entire element of

𝐿𝑆. Then, obtain the data distribution of 𝑁𝐿𝑆 .

– Step 2: Using the data distribution of 𝑁𝐿𝑆 as a basis, select training data systematically

from 𝐿𝑆 to obtain 𝐿𝑆𝑗
𝑃 . The specific selection method and the meanings of the

subscripts P and j are explained in Section 5.4.2.2.

– Step 4: Synthesize data from 𝑇𝑆 to evaluate model robustness. Let the generating

function be 𝑇𝑘 and obtain the date 𝐸𝑆𝑘 for the evaluation data（𝐸𝑆𝑘 = 𝑇𝑘(𝑇𝑆)）. The

specific synthesis method is described in Section 5.4.3.1. Depending on the data

synthesis method 𝑇𝑘 , the trained model 𝑀 is used if necessary.

– Step 5: Evaluate the trained learning model 𝑀𝑗
𝑃 with the data 𝐸𝑆𝑘 to obtain a model

robustness index and investigate the difference in 𝑀𝑗
𝑃 , i.e., the impact of 𝐿𝑆𝑗

𝑃on the

model robustness.

 Neuron Coverage Distribution

5.4.2.1 Measurement of Neuron Coverage

A set of neuron coverage 𝑁𝐿𝑆 was obtained against all the data in the training dataset LS,

and the data distribution (i.e. neuron coverage distribution) is shown in Figure 5.2. In Figure 5.2

(a), the horizontal axis represents the neuron coverage for the input data and the vertical axis

shows the counts that yielded the corresponding neuron coverage values: the graph is a result

of KDE. Figure 5.2 (b) is a scatter plot showing neuron coverage versus input data on the

horizontal axis and prediction probability for the same input data on the vertical axis. Red dots

represent data for which the prediction is correct (true) and blue dots represent data for which

the prediction is incorrect (false). Both the training data accuracy and the test data accuracy

were 99%.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

44

(a) Neuron coverage vs data counts (b) Neuron coverage vs prediction probability

Figure 5.2 Results for training data

Figure 5.2 (a) shows that the measured neuron coverage is distributed between 0.38 and

0.84. The median and mean are both 0.60. Figure 5.2 (b) shows that there is little correlation

between neuron coverage and predictive certainty (predictive probability value). In Figure 5.2,

for example, the area circled by the oval corresponds to training data leading to neuron coverage

that are greater than the mean. In particular, not only do the predicted probability values of the

correct tag vary widely, even for the same value of neuron coverage, but they also include both

correct and incorrect answers. Even if we focus on regions with small values of neuron coverage,

the same trend is observed. Therefore, neuron coverage represents the internal state of the

predictive inference process, but does not correlate with end-to-end output values.

Small neuron coverage suggests that the input data does not have significant information

that contributes to classification. In the extreme case, if the pixel value of the input image is zero,

there are no neurons to be activated, resulting in zero neuron coverage. The measurement

results were in the small range of about 0.38, suggesting that the "weak" input signal was utilized

to lead to the predictive classification results. On the other hand, large neuron coverage indicates

that there are many activated neurons. A large neuron coverage value does not necessarily

contribute to an improvement in the probability of predicting the correct answer. It suggests that

the input data does not have information that leads to a significant classification result, i.e., it

cannot distinguish between different classifications. In fact, when the number of neurons in the

measured layer is small and the structural capacity is thus small, the correct answer rate is

inferior while the neuron coverage is larger: it is consistent with the measured results（Figure

5.2 and Figure 5.3）. Therefore, under the assumption that structural capacity is sufficient, using

data for training, where those are located near the center of the data distribution of neuron

coverage, can be expected to actively select data that contribute to proper classification and

model robustness without affecting model accuracy much.

In this chapter, we summarize the above observations into two hypotheses. Let 𝐿𝑆 be the

training dataset to be debugged, and consider the data distribution of a collection 𝑁𝐿𝑆 of

neuron coverage for all the elements in 𝐿𝑆.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

45

［Hypothesis 1］Neuron coverage is correlated with model robustness

［Hypothesis 2］The data distribution of 𝑁𝐿𝑆 provides the criteria for outliers.

Thereafter, experiments will be conducted to confirm the validity of the hypothesis, and

guidelines for training data debugging will be outlined.

5.4.2.2 Segmentation of Training Data

Based on the data distribution of the neuron coverage 𝑁𝐿𝑆 of the training data (Figure 5.2

(a)), we systematically select the training data from the LS to obtain 𝐿𝑆𝑗
𝑃 . Here, the same number

(40,000) of training data 𝐿𝑆𝑗
𝑃 are systematically extracted from 𝐿𝑆 of the size 60,000. Let the

MNIST training data 𝐿𝑆 be divided into 𝐿𝑆〈𝐶〉 according to the classification class C（𝐿𝑆 = ∪

𝐿𝑆〈𝐶〉） , the following two extraction methods are considered. When the designation of the

selection mode 𝑃 is 𝑁, we obtain 5 datasets 𝐿𝑆𝑗
𝑁 over the whole 𝐿𝑆, where the size interval

of the neuron coverage is [5000 × 𝑗, 5000 × 𝑗 + 39999] (𝑗 = 0,1,2,3,3,4). Alternatively, when

the selection mode 𝑃 is 𝐶, for each 𝐿𝑆〈𝐶〉, 400 elements are selected in the similar way and

then combined to obtain 𝐿𝑆𝑗
𝐶 . Histograms of each are shown in Figure 5.3.

Comparing 𝐿𝑆𝑗
𝑁 in Figure 5.3 (a) and 𝐿𝑆𝑗

𝐶 in (b), we can see that the outline of the

distribution is different. 𝑛 addition, the distribution of 𝐿𝑆〈𝐶〉 originally differed by the

classification class 𝐶. According to the measurements, for example, 0 and 6 are biased toward

regions with small values of neuron coverage (< 0.5), while 3 and 8 are biased toward regions

with large values (> 0.5). 𝐿𝑆𝑗
𝐶 which extracts and combines the same numbers of data for each

𝐿𝑆〈𝐶〉, is more gentle than 𝐿𝑆𝑗
𝑁 , which shows a shape like a "sheer cliff".

(a) Segmentation of the entire training data（𝐿𝑆𝑗
𝑁）

(b) Combination of segmentation by the classification class（𝐿𝑆𝑗
𝐶）

Figure 5.3 Segmentation of the training data

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

46

5.4.2.3 Indicator for Model Accuracy

Measure the model accuracy of the trained training model 𝑀𝑗
𝑃 obtained using the training

data 𝐿𝑆𝑗
𝑃 of size 40,000 (10 models in total). The MNIST test dataset 𝑇𝑆 is used as the data for

the evaluation. 𝑇𝑆 is considered to have the same data distribution as 𝐿𝑆, but different from

𝐿𝑆𝑗
𝑃 . In fact, when compared in terms of neuron coverage, 𝑁𝐿𝑆 and 𝑁𝑇𝑆 showed the identical

distribution. Therefore, the neuron coverage distributions for 𝐿𝑆𝑗
𝑃 and TS are different.

difference is anticipated to affect the quantitative results of model accuracy. The finding that 𝑁𝐿𝑆

and 𝑁𝑇𝑆 show the same distribution is consistent with the assumption that there is no sample

selection bias between 𝐿𝑆 and 𝑇𝑆.

Here, we investigate how the difference in training data 𝐿𝑆𝑗
𝑃 affects the model accuracy in a

qualitative way. The percentage of correct answers and Gini coefficients are shown in Figure 5.4

as the indicators of model accuracy. Blue represents the case of extraction from the whole (𝑀𝑗
𝑁)

and red represents the case of extraction by class (𝑀𝑗
𝐶). The horizontal axis represents the

difference in trained training models (𝑀𝐾 = 𝑀𝑗
𝑃 , 𝐾 = 1,2,3,4,5). The percentage of correct

answers is about 96%, not much difference between 𝑀𝐾 . The relative differences between 𝑀𝐾

are small, about 0.6% in the case of total extraction and 0.3% in the case of class-by-class

extraction. The Gini coefficient, which represents the degree of variation among classes, is small

(less than 0.002), indicating equal accuracy among classes. From the above, it is confirmed that

the difference in 𝐿𝑆𝑗
𝑃 has a small correlation with model accuracy.

For the Gini coefficients, the graph trends are different for the overall extraction (blue) and

for the class-by-class extraction (red). The former is a gradual monotonic decrease and the latter

is a gradual monotonic increase. As can be seen from Figure 5.4, there is a difference in the

number of data per classification class between the overall extraction (blue) and the extraction

by class (red). Compared to the percentage of correct answers, the Gini coefficient is probably

affected more by training data from other classification classes, which may be related to the

cause of the difference in monotonicity. though the graph is not shown, there was a strong

correlation between the average percentage of correct answers and the average predicted

probability.

Figure 5.4 Model Accuracy

Correctness (Accuracy) Correctness (Gini coefficient)

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

47

 Measurement of Model Robustness

In empirical evaluation of the model robustness, data for evaluation should be prepared with

statistical properties that differ from training or test data.

5.4.3.1 Data Augmentation for Evaluation

We outline the basic approach to discussing model robustness. The robust radius δ [41] is

defined as | 𝑥 − 𝑥′ |𝑝 ≤ 𝛿 , satisfying | 𝑃𝑥[𝑦] − 𝑃𝑥′[𝑦′] | ≤ 𝜀 for a given 𝜀 : the larger 𝛿 , the

better the robustness.

In the measurement experiment, given a reference data point 〈𝑥, 𝑦〉 , we introduce a

transformation function 𝑇 that systematically finds 𝑥′ (𝑥′ = 𝑇(𝑥), 𝑦′ = 𝑦 in the classification

task). We define the data distance 𝑑𝑇(𝑥) = |𝑥 − 𝑇(𝑥)| using the L2 norm. For a given 𝜀, the

robust radius 𝛿 can be obtained empirically by varying 𝑑𝑇(𝑥) and observing the difference in

the prediction probability. However, as will be explained later, it is difficult to properly determine

the transformation function 𝑇 such that 𝑑𝑇(𝑥) varies smoothly. Here, we consider a

transformation function 𝑇 that produces data showing different qualitative properties.

Specifically, Gaussian noise insertion, missing small areas, semantic noise insertion (frame,

underline), and affine transformations (rotation, reduction and expansion) were used.

The elements of the MNIST test dataset 𝑇𝑆 are used as reference data and the

transformation function 𝑇𝑘 is applied to generate evaluation data (𝐸𝑆𝑘 = {〈𝑇𝐾(𝑥), 𝑦〉 | 〈𝑥, 𝑦〉 ∈

𝑇𝑆}). In addition, for 𝑑𝑖𝑓𝑓𝐾(𝑥) = | 𝑝𝑥(𝑦) − 𝑝𝑇(𝑥)(𝑦) | , let 𝐷𝑖𝑓𝑓𝐾 = { 𝑑𝑖𝑓𝑓𝐾(𝑥) | 𝑥 ∈ 𝑇𝑆 } .

Furthermore, let 𝑑𝐾(𝑥) = | 𝑥 − 𝑇𝐾(𝑥) |. Then, we examine the characteristics of 𝐸𝑆𝑘 using the

trained model 𝑀 obtained by training with 𝐿𝑆.

Figure 5.5 shows the generated images, scatter plots of the predicted probability 𝑝𝑥(𝑦) of

𝑇𝑆 data on the horizontal axis and 𝑝𝑇(𝑥)(𝑦) of 𝐸𝑆 data on the vertical axis, and data

distribution of 𝑑𝐾(𝑥) for eight different transformations. From the images, it can be seen that

they all preserve the visual features of the data 𝑥 chosen as the reference. The scatter plots

show that the distribution differs depending on the data generation method for evaluation, and

that its impact on the prediction probability is quite different.

The top left two are with Gaussian noise added, but the magnitude of the noise is different:

the larger the noise, the greater the variability of the prediction probability. The distribution of

𝑑𝐾(𝑥) shows a sharp peak from the way the magnitude of the Gaussian noise given. It is easy to

change 𝑑𝐾(𝑥) by increasing the noise, but on the other hand, the effect on the visual image is

significant and the data is not appropriate for the evaluation. The two at the bottom left are

corrupted data with a certain missing area. though 𝑑𝐾(𝑥) can be varied by changing the size of

the missing region, the distribution of each 𝑑𝐾(𝑥) shows a sharp peak. Extremely large missing

areas will destroy the original image and reduce the usefulness of the data for evaluation.

The top two on the right are semantic noise insertions (frame, underline). Due to the

properties of the noise insertion method [35], the value of 𝑝𝑇(𝑥)(𝑦) is approximately 1. It is

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

48

clear from visual inspection that the frame has a larger value of 𝑑𝐾(𝑥) : the distribution shows

a sharp peak. The two affine transformations in the lower right corner have a sloping

distribution. Taken as a whole, the distribution of 𝑑𝐾(𝑥) is skewed for each transformation

method, but each shows a distinctive peak.

Figure 5.5 Data for Model Robustness Evaluation

Figure 5.6 plots the mean value of 𝑑𝐾(𝑥) on the horizontal axis and the mean value of

 𝑑𝑖𝑓𝑓𝐾(𝑥) on the vertical axis. he whole of the data for evaluation 𝐸𝑆𝑘 together means that the

evaluation can be done with various 𝑑𝐾(𝑥) values. essence, the evaluation of model robustness

is being conducted using a variety of data of different qualitative nature. In fact, it is important

to know what kind of data of what nature to use for evaluation, which is the same "test case"

issue important in traditional software testing as well.

Figure 5.6 Mean Distance from Base Data

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

49

5.4.3.2 Indicator for Model Robustness

In the present experiment, the average value of 𝐷𝑖𝑓𝑓𝐾 defined previously is used as an

indicator of empirical model robustness using data for evaluation. As in the case of model

accuracy test, we measure the average value of each 𝐷𝑖𝑓𝑓𝐾 for the trained model 𝑀𝑗
𝑃 obtained

using the training data 𝐿𝑆𝑗
𝑃 . Figure 5.7 shows the results: (a) shows 𝑀𝑗

𝐶 and (b) shows 𝑀𝑗
𝑁 .

Although there are some differences among the evaluation data, the general trend is not

monotonicity among 𝑀𝐾 . In the case of model accuracy (Figure 5.4 (a)), the relative difference

between M_K is less than 1%, whereas in Figure 5.7 the difference is about 10%. Differences in

𝑀𝐾 , i.e., 𝐿𝑆𝑗
𝑃 used for training, have a significant impact on model robustness.

From the way the training data 𝐿𝑆𝑗
𝑃 constructed, we consider that the training data near the

center (originally a region with large frequencies), where both sides of the neuron coverage

distribution are removed, contributes much to the model robustness.

(a) Class-by-class extraction (b) Overall extraction

Figure 5.7 Indicators for Model Robustness

 Debugging Strategy

We obtained trained training models 𝑀𝑗
𝑃 using training data 𝐿𝑆𝑗

𝑃 that were systematically

extracted based on the data distribution of neuron coverage 𝑁𝐿𝑆 for training data, and

evaluated model accuracy and model robustness for these 𝑀𝑗
𝑃 . The results show that while the

model accuracy of 𝑀𝑗
𝑃 is comparable, the model robustness is different. This is consistent with

[Hypothesis 1] (neuron coverage is correlated with model robustness). By excluding the two-

tailed hem of the 𝑁𝐿𝑆 data distribution as outliers, 𝑀2
𝐶 and 𝑀2

𝑁 were found to be generally

reasonable due to their impact on model robustness. This is consistent with [Hypothesis 2] (𝑁𝐿𝑆

data distribution is the criterion for outliers).

Here, we present briefly a debugging strategy for the training data, referring to Figure 5.8.

When the neuron coverage of a given training dataset shows the data distribution on the left side

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

50

of the figure, the central region of the range containing a reasonable number of data is selected,

i.e., the training data corresponding to the two-sided hemisphere is discarded, and the training

data showing the data distribution on the right side of the figure is obtained. Next, from among

the new training data candidates, the training data whose neuron coverage values correspond

to the central region is selected and added to the training data set until a sufficient number of

data is obtained, while maintaining the data distribution on the right side. Additionally,

debugging experiments based on this strategy were conducted by an independent group. The

proposed method was applied to a CNN-based image classification task to confirm that the

debugging strategy described above is feasible.

Figure 5.8 Debugging Strategy for Training Dataset

5.5 Final Remarks

To conclude this chapter, we review recent research in software engineering on the

debugging problem of deep neural networks (DNN) software and position the technologies

discussed in this chapter. In general, when DNN software exhibits defects, the direct cause is a

flaw in the trained model. On the other hand, the construction of trained models involves diverse

elements: (a) the machine learning infrastructure, (b) the learning model (the template for the

DNN model), and (c) the training data. It is often not clear what the root cause is.

In practice, DNN software development is conducted on existing machine learning

frameworks, and includes the programming tasks of scripts that use the APIs provided by the

framework. At this time, the framework may have problems, and the machine learning

mechanism (the program that solves the numerical optimization problem) itself may be

inappropriate, or the library functions called by the script (e.g., learning model definition

functions) may be flawed [49]. This is the case in (a) above and is the responsibility of the

framework provider.

On the other hand, from the viewpoint of deep NN software development using machine

learning frameworks, defects in the scripts are the cause of defects [50]. Depending on the type

of defect, a learning model different from the required specification may be introduced, an error

in data type (e.g., tensor dimension) may occur, or the configured hyperparameters may be

inappropriate. This is the case in (b) above. In machine learning research, it is a matter of logical

design to select an appropriate learning model for a given machine learning task. In contrast, the

question is whether the appropriate "program" according to these higher-level specifications is

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

51

being implemented. There are several studies, such as a method to localize the defective points

of the learning model by monitoring the error function and gradient during the training process

[51].

In general, the functional behavior of DNN software is governed by the training data.

Although it is difficult to address this problem in general, there are studies that approach it as a

fairness issue [52], where the sensitive attributes of the input data often affect the results. his

method can be classified as (c) above in that it focuses on training data, but it is a feature

selection problem and a debugging problem related to data definition.

This chapter addresses the problem in (c), where the root cause of the failure is a bias in the

distribution of the training data. Intuitively, the problem set up is as follows. When a DNN model

trained with given training data does not show the expected model performance (especially

model robustness), the data distribution is transformed by selecting and adding training data to

obtain a DNN model that achieves the desired performance.

In general, research approaching debugging problems from software engineering assumes

that programs, such as scripts, have explicit symbolic representations. There has been little

progress in exploring methods for debugging data distributions of continuous quantities. On the

other hand, studies from machine learning recognize the importance of the data distribution and

deal with the case by means of statistics-based methods, where the distribution function is

known. However, machine learning deals with multi-dimensional vectors whose data

distribution is difficult to represent in a straightforward manner. Even if a theoretical

formulation is possible, it is not directly useful for the practice of debugging.

The method in this chapter uses the empirical distribution of data (continuous quantities) as

guiding information for "debugging" while discarding individual data (discrete quantities). In

particular, we simplified the problem by expressing the properties of the data to be debugged in

terms of neuron coverage distributions, which can be attributed to the method of handling one-

dimensional data distributions. It can be said to combine a statistical view with software

engineering methods.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

52

6 Evaluation and Improvement of Robustness

In this chapter, robustness means the ability that a machine-learned model keeps correct

output even when noise is added to input (including adversarial examples). For example, it

evaluates how much noise can be added to the model without changing the correct results. One

of the measures of its robustness is the maximum safe radius (MSR). In this chapter, we explain

adversarial example and the maximum safe radius in a classifier based on a feedforward neural

network, and then report the results of a survey on techniques for estimating and increasing the

maximum safe radius.

6.1 Robustness measure (maximum safe radius)

It is well known that machine-learned models on inference programs mis-classify input data

even when very small perturbations are added. Such perturbated data are called adversarial

examples [53], and adversarial examples have been actively researched in recent years. The set

𝐴𝑑𝑣𝛿(𝑥) of all adversarial examples contained in the 𝛿-neighborhood (inside the sphere of

radius 𝛿 ∈ ℝ, where ℝ is the set of real numbers) of the input data sample 𝑥 ∈ ℝ𝑛 is defined

as follows:

𝐴𝑑𝑣𝛿(𝑥) = {𝑥′ | ‖ 𝑥 − 𝑥′‖ ≤ 𝛿 ⋀ 𝑓(𝑥) ≠ 𝑓(𝑥′)},

where 𝑓(𝑥) is a function representing the machine-learned model that takes the input sample

𝑥 and return the classification, and ‖𝑥 − 𝑥′‖ is the distance between two data samples 𝑥 and

𝑥′. The 𝑝-norm is often used to define the distance.

Figure 6.1 An adversarial example from an image of a panda, which is mis-classified into a gibbon

Adversarial examples are explained by Figure 6.1. The left side in Figure 6.1 shows the input

space to the neural network and the right side shows the output space from the neural network.

The center of the red sphere in the input space represents an original input image of a panda,

and the inside of the sphere, whose radius is 𝛿, (i.e., 𝛿-neighborhood of the original image)

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

53

represents the set of perturbated images obtained from the original image by adding noises

whose sizes are less than 𝛿. The set of outputs from the neural network for all the input images

in the 𝛿-neighborhood corresponds to the red region in the output space on the right. Here, a

part (lower-right) of the red region in the output side is beyond the decision boundary and is

mapped into the region of gibbons. It means misclassification, and the input images mapped to

the lower-right part are adversarial examples.

If there is no adversarial example in the 𝛿-neighborhood of the input data 𝑥 (i.e., inside the

sphere whose radius is 𝛿 and center is 𝑥), then 𝛿 is said to be the safe radius of 𝑥. Then, the

maximum safe radius of 𝑥, denoted by 𝑀𝑆𝑅(𝑥), is defined as follows:

𝑀𝑆𝑅(𝑥) = max {𝛿 | 𝐴𝑑𝑣𝛿(𝑥) = ∅}.

When the maximum safe radius of 𝑥 is large, it is difficult to generate adversarial examples.

Therefore, the maximum safe radius can be used as a measure of the robustness to input

perturbations, including adversarial examples, of machine-learned models.

The radius 𝛿 in Figure 6.1 is not a safe radius because some perturbated input images inside

the 𝛿 -neighborhood are misclassified into gibbons. On the other hand, 𝛿 in the following

Figure 6.2 is the maximum safe radius because all the input images inside the 𝛿-neighborhood

in Figure 6.2 are correctly classified.

Figure 6.2 The maximum safe radius 𝛿

6.2 A survey on methods for evaluation and improvement of robustness

Table 6.1 shows recent research papers on methods for evaluation and improvement of

robustness, where each small box in the table represents a research paper with reference and

the information on neural networks used in the experiments for evaluating the methods

proposed in the paper. The information is useful for comparing applicable scales of the methods.

Table 6.1 is categorized by the following perspectives:

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

54

Table 6.1 Methods for evaluation and improvement of robustness (MSR: Maximum Safe Radius)

 Evaluation of robustness Improvement of robustness

C
ertified

R
igo

ro
u

s

Rigorous estimation of MSR

Katz et al. 2017 (Reluplex) [54]

ACAS-XU-DNN, 300 ReLU nodes

6 hidden layers,

(Limitation: hundreds of nodes)

Tjeng et al. 2019 [55]

CIFAR-10, ResNet, 9-CNN, 2-layer,

107,496 ReLU units,

100~1,000 times faster than Reluplex

A
p

p
roxim

ative

D
eterm

in
istic

Estimation of a lower bound (LB) of MSR

Weng et al. 2018 (Fast-Lin) [56]

CIFAR, 6-layer, 12,288 ReLU units

About 10,000 times faster than Reluplex

Boopathy et al. 2019 (CNN-Cert)[57]

CIFAR-10 (32x32x3), 5-layer,

10 filters, 29,360 hidden nodes,

Faster than Fast-Lin

Training by detecting all the adversarial exes

Wong and Kolter 2018 [61]

SVHN (32x32x3), 2-conv, 32-ch,

100, 10 hidden units, ReLU,

(Non-applicable to ImageNet)

P
ro

b
ab

ilistic

Estimation of a probabilistic LB of MSR

Weng et al. 2019 (PROVEN) [58]

CIFAR, 5-layer, CNN, ReLU

almost same as CNN-Cert

Randomized smoothing after training

Lecuyer at el. 2019 [62]

ImageNet (299x299x3),

Inception-v3 + auto-encoder

Cohen at el. 2019 [63]

ImageNet (299x299x3),

ResNet-50 (50-layer)

Tighter certification than Lecuyer [62]

U
n

certified

Estimation of an upper bound (UB) of MSR

Carlini and Wagner 2017 [59]

ImageNet (299x299x3),

Inception-v3

Estimation of an approximation of MSR

Weng et al. 2018 (CLEVER) [60]

ImageNet (299x299x3),

ResNet-50 (50-layer)

Training by detecting near adversarial exes

Madry et al. 2018 [64]

CIFAR (32x32x3),

28-10 wide ResNet

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

55

– Columns in Table 6.1 (application):

➢ Evaluation of robustness by estimating MSR

➢ Improvement of robustness by increasing data samples with a specified MSR

– Row in Table 6.1 (certification and strictness):

➢ Certification of no existence of adversarial examples in 𝛿-neighborhood

 Rigorous estimation of MSR

 Approximative estimation of MSR

⚫ Deterministic (no adversarial example exist)

⚫ Probabilistic (the probability of no adversarial example is 𝜌%)

➢ No certification of no existence of adversarial examples in 𝛿-neighborhood

The methods in Table 6.1 are explained in the following Subsections 6.2.1~6.2.7.

 Certified and rigorous evaluation of robustness

Katz et al. [54] proposed a method, Reluplex, to verify that a machine-learned model satisfies

given properties. A demonstration tool that implements the method Reluplex has also been

released. Properties are constraints on input-output relations of machine-learned models, and

Reluplex can exhaustively and rigorously (soundly and completely) verify that there is no

adversarial example in the 𝛿-neighborhood of the input data sample. Therefore, the maximum

safe radius (MSR) can be estimated by checking the existence of adversarial examples by

changing the radius 𝛿 with binary search. Reluplex is an extended Simplex method (one of

solvers for linear programming problems) with rules for the ReLU function and it is implemented

by a satisfiability-checking tool (SMT-Solver) with a module for the theory of real numbers.

Reluplex is a powerful tool to verify properties in addition to robustness, but the computational

cost is expensive and the number of neurons it can verify is a few hundred ReLUs at most.

Tjeng et al. [55] proposed an efficient method for estimating maximum safe radii. Then, they

implemented the method on a mixed integer linear programming (MILP) solver and

demonstrated that the tool can exactly estimate the maximum safe radii of a neural network with

100,000 ReLU-type neurons. Although it is still difficult to apply the rigorous solver-based tools

to practical large-scale machine-learned models, the scalability is being improved.

 Certified, approximative, and deterministic evaluation of robustness

Weng et al. [56] proposed a method, Fast-Lin, to approximate the maximum safe radii of

ReLU-type neural network. Fast-Lin linearly approximates the output region with a polytope and

estimates an approximation δ that is slightly smaller than the maximum safe radius, as shown in

Figure 6.3. It is guaranteed that there is no adversarial example inside the 𝛿-neighborhood

because the approximation δ does not exceed the maximum safe radius (i.e. sound). It means δ

is a safe radius and is a lower bound of the maximum safe radius (𝛿 ≤ 𝑀𝑆𝑅(𝑥)). It was reported

that Fast-Lin is 10,000 times faster than the rigorous method Reluplex by approximative convex

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

56

outer polytopes.

Figure 6.3 An approximation 𝛿 that is slightly smaller than the maximum safe radius (MSR)

Boopathy et al. proposed CNN-Cert, which is an improved version of Fast-Lin [57]. CNN-Cert

also supports convolutional networks including not only the activation function ReLU but also

sigmoid, tanh, and arctan, and it improves approximation accuracy and is faster than Fast-Lin.

 Certified, approximative, and probabilistic evaluation of robustness

Weng et al. [58] proposed a method, PROVEN, to approximate probabilistic maximum safety

radii. As shown in Figure 6.4, the probabilistic maximum safe radius 𝛿 with a probability 𝜌

means that there is no adversarial example inside the 𝛿-neighborhood with a probability 𝜌. In

other words, it permits the existence of adversarial examples with the probability (1 − 𝜌) .

PROVEN has been developed based on CNN-Cert, and the computational complexity has not

significantly increased from CNN-Cert.

Figure 6.4 An approximation 𝛿 that is slightly smaller than the probabilistic MSR with 𝜌

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

57

 Uncertified evaluation of robustness

Carlini and Wagner [59] proposed a method to detect the (almost) closest adversarial

example to the input data sample 𝑥 and estimate the distance 𝛿 as an approximative

maximum safety radius by using an existing optimization tool (Adam). However, it is not

guaranteed that the distance 𝛿 estimated by the method is the shortest distance to the

adversarial example, and there is a possibility that there are adversarial examples closer than

the distance. In other words, it is an upper bound of the maximum safe radius (𝑀𝑆𝑅(𝑥) ≤ 𝛿).

Although it is not guaranteed that the distance δ estimated by the method is a safe radius, it is

often used for evaluation in recent papers on robustness as a measure of the maximum safe

radius.

Weng et al. [60] proposed the method CLEVER to estimate an approximate maximum safe

radius as an evaluation measure of robustness independent of attack methods. It was reported

that the method could be applied to relatively large neural networks and the image recognition

model Inception-v3 was evaluated in about 10 seconds. The method estimates an approximative

maximum safe radius based on the maximum effect in output caused by small changes in input,

where the maximum effect is approximated by the extreme value theory. As shown in Figure 6.5,

the estimated value 𝛿 can be larger than the maximum safe radius, and thus there is a

possibility that adversarial examples exist inside the 𝛿-neighborhood (i.e., it is not guaranteed

that 𝛿 is the safe radius).

Figure 6.5 An approximation of the maximum safe radius (uncertified)

 Certified, approximative, and deterministic improvement of robustness

Wong et al. [61] proposed a method (robust training) to train such that the maximum safe

radius of each data in the training dataset to be a specified value 𝛿. Although this method does

not guarantee that the maximum safe radius δ is obtained for every training data sample after

training, it also gives a method to estimate an approximative value (a safe radius) of the

maximum safe radius for each input data sample. In the robust training, neural networks try to

learn such that they correctly make inferences for not only training data samples but also the 𝛿-

neighborhood of every sample.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

58

A sketch of the robust training is shown in Figure 6.6, where the black dotted line in the

output space represents the decision boundary learned by a normal training, and the red solid

line represents the decision boundary learned by the robust training. The six training data

samples in the input space are correctly classified by both the boundaries, but some data in the

𝛿-neighborhood of each sample are misclassified by the dotted boundary (normal training). On

the other hand, data in the 𝛿 -neighborhood of each sample are also learned in the robust

training as shown in the red boundary. The robust training can guarantee some safe radii, but it

is difficult to apply the training to practical large scale neural networks due to the low scalability.

Wong et al. [61] reports that the robust training was successfully applied to the datasets of

images, MNIST (28 × 28) and SVHN (32 × 32) but was not applicable to ImageNet (256 × 256).

Figure 6.6 Robust-trining by input data with 𝛿-neighberhood

 Certified, approximative, and probabilistic improvement of robustness

Lecuyer et al. [62] proposed a method to estimate maximum safe radii that can be

probabilistically guaranteed by randomized smoothing. In the randomized smoothing, the

inference for the same input is repeated in a neural network where a noise layer is added after

training, and the final output is the average of the outputs obtained by the repeated inferences.

A sketch of the randomized smoothing is shown in Figure 6.7, where the black dotted line in

the output space represents the decision boundary without randomized smoothing, and the red

solid line represents the decision boundary with randomized smoothing. The randomized

smoothing of Lecuyer et al. [62] improves robustness by smoothing decision boundaries with

certification of safe radii and has been successfully applied to guarantee the robustness of

machine learned models for large-scale input data such as ImageNet (299 × 299 × 3). When the

variance of the added noise is increased, the guaranteed safe radius also increases, but on the

other hand, the correctness (e.g., accuracy) decreases. Lecuyer et al. [62] applied the technique

of differential privacy, where the output for two similar inputs is made statistically

indistinguishable, to clarify the relations between certifiable approximative probabilistic

maximum safe radii, the standard deviation of noise, the number of inferences, and so on.

Cohen et al. [63] proposed a randomized smoothing based method that can estimate tighter

certifiable approximative probabilistic maximum safe radii than one of Lecuyer et al. [62].

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

59

Although randomized smoothing needs repeated inferences (tens or hundreds of times

experimentally) for an input, it can probabilistically guarantee robustness even for large-scale

networks.

Figure 6.7 Improvement of robustness by randamized smoothing

 Uncertified improvement of robustness

Madry et al. [64] proposed a method (adversarial training) to train such that maximum safe

radius of each data in the training dataset to be a specified value 𝛿. In the adversarial training,

samples to be potentially adversarial examples in 𝛿-neighborhood are detected during training

and are also used as training data. Compared to the robust training of Wong et al. [61], the

adversarial training cannot guarantee robustness, but it is more applicable to larger networks.

In addition, compared to randomized smoothing, the adversarial training does not require

repeated inferences.

6.3 Conclusion

In general, improvement of robustness tends to decrease accuracy, and currently accuracy is

often more important. However, if robustness is not considered, accuracy may rapidly decrease

even by small input perturbations. Therefore, robustness is important in critical systems. The

methods related to the maximum safe radius, which is a measure of robustness, explained in this

chapter have been proposed recently, and environments for applying such methods have not

been established well yet. Since such methods have been experimentally applied also to practical

machine learned models, we think that the maximum safe radius can be one of measures of

robustness in a few years.

...

...

...

...

...

Neural network

Outputinput

noise for smoothing

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

60

7 Estimation of Generalization Error Bounds

In Machine Learning Quality Management (MLQM) Guideline [1] introduced in Chapter 1,

the following two internal quality properties are described:

– the correctness of trained models, that represents that trained models correctly behave

for datasets (data samples), and

– the stability of trained models, that represents that trained models reasonably behave

even for unseen input data not included in datasets.

Although widely used measures such as recall, precision, and accuracy based on testing datasets,

are useful for evaluating the correctness of trained models, they are not sufficient for

guaranteeing the stability of trained models, that requires stability even for unseen data.

Figure 7.1 Inference by a neural classifier 𝑓𝑤 with weight-perturbations

In this chapter, in order to statistically guarantee such stability with a confidence for any

input, including unseen input, we explain how to estimate the upper bounds of weight-perturbed

generalization errors of neural classifiers that are feed-forward neural networks trained for

classification. The neural classifiers are henceforth referred to simply as “classifiers”. The weight-

perturbed generalization error represents the expected value of the misclassification-rate of the

classifier when perturbations are added on weight-parameters between neurons during

inference for any input, as shown in Figure 7.1. The weight-perturbed generalization errors are

thought to be useful for evaluating stability because Jiang et al. [65] reported that such errors

have high correlation with generalization performance.

At first, weight-perturbed generalization errors are defined in Section 7.1, and formal

expressions are presented for estimating their upper bounds in Section 7.2. Then, it is explained

how to determine thresholds for worst weight-perturbations in Section 7.3, and it is

demonstrated by experiments in Section 7.4. Finally, related works are introduced in Section 7.5,

and it is concluded that weight-perturbed generalization errors are useful for evaluating stability

of classifiers in Section 7.6.

7.1 Weight-perturbed generalization error

In this chapter, the following two types of weight-perturbations are used:

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

61

– random weight-perturbations, that are randomly selected from uniform distribution

with specified range, and

– worst weight-perturbations, that are selected towards misclassification within the

range.

Although even worst perturbations do not necessarily cause misclassification, perturbations

really causing misclassification are called adversarial perturbations.

Figure 7.2 shows examples of decision boundaries and output deviation areas of weight-

perturbed classifiers A and B. In the magnified part in Figure 7.2, the central dot represents the

output of the classifier A without weight-perturbation and the small area around the dot

represents the possible output deviation range when weight-perturbations within a specified

range are added. The shaded area in the magnified part corresponds to the set of adversarial

perturbations, that change the output to misclassification. In Figure 7.2, random perturbations

(e.g., natural noise) can degrade the classifier A, but they little degrade classifier B because the

areas of adversarial perturbations in the classifier B are very small. Nevertheless, it is possible

to search rare adversarial perturbations even for the classifier B, and therefore it is important to

check the existence (i.e., risk) of adversarial perturbations. The worst perturbations are useful

for evaluating such risk.

Figure 7.2 Decision boundaries and output deviation areas of weight-perturbed classifiers

In this chapter, a neural classifier is modeled by a function 𝑓𝑤 that represents the relation

between input 𝑥 and output 𝑦; thus 𝑦 = 𝑓𝑤(𝑥), where 𝑤 ∈ ℝ𝜔 represents the weights (i.e.,

training parameters) on connections between neurons in the neural network, and 𝜔 is the

number of weights. The set 𝑈𝑤,𝛼 of weight-perturbations is defined such that the ratio of

magnitude of a perturbation 𝑢𝑖 to the magnitude of each weight 𝑤𝑖 is bounded by a given

constant 𝛼, as follows:

𝑈𝑤,𝛼 ≔ { (𝑢1, … , 𝑢𝜔) ∈ ℝ𝜔 | ∀𝑖. |𝑢𝑖| ≤ 𝛼|𝑤𝑖| }. (7. 1)

The perturbations in the set 𝑈𝑤,𝛼 are often called magnitude-aware perturbations [65]. The

multivariate uniform-distribution for randomly selecting a perturbation from the set 𝑈𝑤,𝛼 is

denoted by 𝒰𝑤,𝛼 , and therefore, if 𝑢~𝒰𝑤,𝛼 , then 𝑢𝑖~𝐔(−𝛼|𝑤𝑖|, 𝛼|𝑤𝑖|) . Henceforth, if the

subscripts 𝑤 and 𝛼 are clear from context, then 𝑈𝑤,𝛼 and 𝒰𝑤,𝛼 are simply denoted by 𝑈

and 𝒰, respectively.

Classifier A

$

Classifier BMagnification

Output deviation range by perturbations

Misclassification area

Decision boundary

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

62

Then, for a pair (𝑥, 𝑦), for any weight-perturbation 𝑢 ∼ 𝒰, the expected value, called the

weight-perturbed individual error, of misclassification rate is defined as follow:

𝐫(𝑥,𝑦)
𝛼 (𝑓𝑤) ≔ 𝔼𝑢~𝒰[ℓ(𝑓𝑤+𝑢(𝑥), 𝑦)], (7. 2)

where ℓ(𝑦, 𝑦′) is a loss function, and the following 0-1 loss function is used in this chapter:

ℓ(𝑦, 𝑦′) ≔ 𝕀[𝑦 ≠ 𝑦′], (7. 3)

where 𝕀[𝑏] is the following indicator function, and therefore, the loss function (7.3) above

means that the loss is 1 if misclassified, and 0 otherwise.

𝕀[𝑏] ∶= if 𝑏 then 1 else 0 (7. 4)

The weight-perturbed individual error corresponds to the ratio of the shaded area (i.e.,

misclassification) to the possible deviation area in the magnified part of Figure 7.2.

Now, the randomly weight-perturbed generalization error 𝐑𝛼(𝑓𝑤) of the classifier 𝑓𝑤 is

defined as the expected value of the weight-perturbed individual error 𝐫(𝑥,𝑦)
𝛼 (𝑓𝑤) for any pair

(𝑥, 𝑦)~𝒟 as follows:

𝐑𝛼(𝑓𝑤) ≔ 𝔼(𝑥,𝑦)~𝒟[𝐫(𝑥,𝑦)
𝛼 (𝑓𝑤)], (7. 5)

where 𝒟 is the distribution of pairs (𝑥, 𝑦) of input 𝑥 and output (class) 𝑦.

The randomly weight-perturbed generalization error hardly increases when the weight-

perturbed individual error is very small as shown in the classifier B in Figure 7.2. Therefore, for

evaluating the risk where adversarial weight-perturbations exist more than a small threshold,

the worst weight-perturbed generalization error 𝐖𝜃
𝛼(𝑓𝑤) of the classifier 𝑓𝑤 is defined as the

expected value of 0/1-boolean value that is 1 if the weight-perturbed individual error 𝐫(𝑥,𝑦)
𝛼 (𝑓𝑤)

is greater than the threshold 𝜃(𝑥,𝑦) and 0 otherwise for any pair (𝑥, 𝑦)~𝒟 as follows:

𝐖𝜃
𝛼(𝑓𝑤) ≔ 𝔼(𝑥,𝑦)~𝒟 [𝕀[𝐫(𝑥,𝑦)

𝛼 (𝑓𝑤) > 𝜃(𝑥,𝑦)]] (7. 6)

𝛩 ≔ 𝔼(𝑥,𝑦)~𝒟[𝜃(𝑥,𝑦)] (7. 7)

where 𝜃(𝑥,𝑦) is the threshold that can depend on (𝑥, 𝑦), and 𝛩 is the expected value for 𝒟.

The threshold means the accepted ratio of existence of adversarial perturbations. If “worst

weight-perturbation” is exactly defined in 𝐖𝜃
𝛼(𝑓𝑤), then the threshold 𝜃(𝑥,𝑦) should be zero

because it must be checked whether one or more adversarial weight-perturbations exist or not.

However, it is reasonable to set the threshold to be appropriately small values because the zero-

threshold often too strong to apply to practical classifiers and it is often unrealistic from the

perspective of computation cost. The appropriate thresholds are explained later in Section 7.3.

7.2 Estimation of weight-perturbed generalization error bounds

Although it is difficult in general to exactly compute weight-perturbed generalization errors

because there can be infinitely many data pairs (𝑥, 𝑦) and perturbations 𝑢, there are various

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

63

existing works on the bounds of generalization errors. In this section, expressions for estimating

randomly weight-perturbed generalization errors and worst weight-perturbed generalization

errors are introduced.

For randomly weight-perturbed generalization errors, there are many existing works. For

example, by the combination of the Maurer bounds (Theorem 5 in [67]) and the Sample

Convergence bounds (Theorem 2.5 in [68]), the following inequality (7.8) holds with

probability (i.e., confidence) at least (1 − 𝛿) for any 𝛿 ∈ (0, 1) [69]:

𝐑𝛼(𝑓𝑤) ≤ 𝐑̅𝑇,𝑉,𝛿0 ,𝛿
𝛼 (𝑓𝑤), (7. 8)

where 𝑇~𝒟𝑛 is a testing dataset (size 𝑛) that is not used for training, 𝑉~𝒰𝑚 is a set (size 𝑚)

of samples of random weight-perturbations, the uncertainty 𝛿0 ∈ (0, 𝛿) is the acceptable

degradation of confidence caused by using the perturbation samples instead of any perturbation,

and the right-hand side 𝐑̅ 𝑇,𝑉,𝛿0 ,𝛿
𝛼 (𝑓𝑤) is defined by

 𝐑̅𝑇,𝑉,𝛿0,𝛿
𝛼 (𝑓𝑤) ≔ 𝑘𝑙−1 (𝐑̅̅𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤),
1

 𝑛
ln (

2√𝑛

𝛿 − 𝛿0
)), (7. 9)

where 𝐑̅̅𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) is an upper bound of the weight-perturbed testing error 𝐑̂̂𝑇,𝑉
𝛼 (𝑓𝑤) by the

testing dataset 𝑇 and perturbation samples 𝑉, and they are defined by

𝐑̅̅𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) ≔ 𝑘𝑙−1 (𝐑̂̂𝑇,𝑉
𝛼 (𝑓𝑤),

1

 𝑚
ln (

2

𝛿0
)), (7. 10)

𝐑̂̂𝑇,𝑉
𝛼 (𝑓𝑤) ≔

1

 𝑛𝑚
∑ ∑ ℓ(𝑓𝑤+𝑢(𝑥), 𝑦)

(𝑥,𝑦)∈𝑇𝑢∈𝑉

, (7. 11)

where 𝑘𝑙−1(𝑞, 𝑏) is defined by

𝑘𝑙−1(𝑞, 𝑏) ≔ sup{ 𝑝 ∈ [𝑞, 1] | 𝑘𝑙(𝑞 ∥ 𝑝) ≤ 𝑏 }, (7. 12)

and 𝑘𝑙(𝑞 ∥ 𝑝) is the binary Kullback-Leibler divergence, and is defined as follows:

𝑘𝑙(𝑞 ∥ 𝑝) ≔ 𝑞 ln (
𝑞

 𝑝
) + (1 − 𝑞) ln (

1 − 𝑞

 1 − 𝑝
). (7. 13)

On the other hand, for the worst weight-perturbed generalization errors, there are some (not

many) existing works on estimating them. For example, the following inequality (7.14) holds

with probability (i.e., confidence) at least (1 − 𝛿) for any 𝛿 ∈ (0, 1) [70]:

𝐖𝜃
𝛼(𝑓𝑤) ≤ 𝐖̅𝜃,𝑇,𝑉,𝛿0 ,𝛿

𝛼 (𝑓𝑤), (7. 14)

where the parameters 𝑇~𝒟𝑛 , 𝑉~𝒰𝑚, and 𝛿0 ∈ (0, 𝛿) are the same as the parameters in (7.8),

and the right-hand side 𝐖̅𝜃,𝑇,𝑉,𝛿0 ,𝛿
𝛼 (𝑓𝑤) is defined by

𝐖̅𝜃,𝑇,𝑉,𝛿0 ,𝛿
𝛼 (𝑓𝑤) ≔ 𝑘𝑙−1 (𝐖̅̅𝜃,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤),
1

 𝑛
ln (

2

𝛿 − 𝛿0
)), (7. 15)

where 𝐖̅̅𝜃,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) is an upper bound of the ratio of the size of a risky dataset to the size of the

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

64

testing dataset, and it is defined from an upper bound 𝐫̅(𝑥,𝑦),𝑉,𝛿1

𝛼 (𝑓𝑤) of the weight-perturbed

individual error as follows:

𝐖̅̅𝜃,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) ≔
1

 𝑛
∑ [1 [𝐫̅

(𝑥,𝑦),𝑉,
𝛿0
𝑛

𝛼 (𝑓𝑤) > 𝜃(𝑥,𝑦)]]
(𝑥,𝑦)∈𝑇

, (7. 16)

𝐫̅(𝑥,𝑦),𝑉,𝛿1

𝛼 (𝑓𝑤) ≔ 𝑘𝑙−1 (𝐫̂(𝑥,𝑦),𝑉
𝛼 (𝑓𝑤),

1

 𝑚
ln (

2

𝛿1
)), (7. 17)

𝐫̂(𝑥,𝑦),𝑉
𝛼 (𝑓𝑤) ≔

1

 𝑚
∑ ℓ(𝑓𝑤+𝑢(𝑥), 𝑦)

𝑢∈𝑉

. (7. 18)

The expected value 𝛩 of the threshold 𝜃 is explained in the next Section 7.3.

7.3 Thresholds for worst weight-perturbations

The randomly weight-perturbed generalization error bound 𝐑̅𝑇,𝑉,𝛿0 ,𝛿
𝛼 (𝑓𝑤) can be estimated

by measuring the average 𝐑̂̂𝑇,𝑉
𝛼 (𝑓𝑤) of misclassification rates of the classifier 𝑓𝑤 for the testing

dataset 𝑇 and perturbation samples 𝑉. On the other hand, for estimating the worst weight-

perturbed generalization error bound 𝐖̅𝜃,𝑇,𝑉,𝛿0,𝛿
𝛼 (𝑓𝑤) , it is important how to determine the

threshold 𝜃, and there are two practical and reasonable approaches for deciding the threshold.

One of them, called fixed threshold, is explained Subsection 7.3.1, and the other one, called

adaptive threshold, is explained in Subsection 7.3.2.

 Fixed threshold

Let 𝑉~𝒰𝑚 be a set of weight-perturbation samples and 𝑇~𝒟𝑛 be a testing dataset. Then, 𝑇

is partitioned to the risky dataset 𝑇1 and the rest set 𝑇0 = 𝑇 − 𝑇1, where 𝑇1 is defined by

𝑇1 ≔ {(𝑥, 𝑦) ∈ 𝑇 | ∃𝑢 ∈ 𝑉. 𝑓𝑤+𝑢(𝑥) ≠ 𝑦}. (7. 19)

In this case, the testing error bound 𝐖̅̅𝜃,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) defined in the expression (7.16) can be

simply estimated by

𝐖̅̅
𝜃𝑚,𝑛,𝛿0

𝑓𝑖𝑥
,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) =
 𝑛1

𝑛
 , (7. 20)

where 𝑛1 is the size of 𝑇1, and 𝜃𝑚,𝑛,𝛿0

𝑓𝑖𝑥 is called the fixed threshold and is defined by

𝜃𝑚,𝑛,𝛿0

𝑓𝑖𝑥
≔ 1 − (

𝛿0

 2𝑛
)

1
𝑚

 . (7. 21)

Therefore, it is sufficient for the fixed threshold to count the number of risky data samples where

one or more adversarial weight-perturbations exists in the set 𝑉 of samples. In this case, the

expected threshold 𝛩 is equal to 𝜃𝑚,𝑛,𝛿0

𝑓𝑖𝑥 because it is independent from individual data.

If a fixed threshold 𝜃0 is specified, the size 𝑚 of weight-perturbation samples can be

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

65

determined to satisfy the following condition that is obtained by transforming the expression

(7.21):

𝑚 ≥
ln(𝛿0 / (2𝑛))

ln(1 − 𝜃0)
 . (7. 22)

For example, if 𝑛 = 5000, 𝛿0 = 0.05, and 𝜃0 = 0.01 (i.e., the fixed threshold 1%), then the

required size of weight-perturbation sample is 1215 . Higher robustness requires a smaller

threshold, but it means to require more samples (i.e., more computation cost). It will be

necessary to set a practically reasonable threshold.

 Adaptive threshold

In the case that the ratios of adversarial weight-perturbations are very small as shown in the

classifier B in Figure 7.2, the possibility that adversarial weight-perturbations are contained in

the set of randomly selected samples is very low. For effectively finding such adversarial weight-

perturbations, it is useful to search them based on gradients of loss functions (e.g., Algorithm 3

in [65]), although such search cannot guarantee that there is no adversarial weight-

perturbations even if it cannot find them. Therefore, both of random samples and such search

are used in [70], where gradient-based search is applied to the dataset 𝑇0 that is the subset of

the testing dataset 𝑇 explained in Subsection 7.3.1. Then, the dataset 𝑇0 is partitioned to the

risky dataset 𝑇01 and the rest set 𝑇00 = 𝑇0 − 𝑇01, where 𝑇01 is the dataset, for which one or

more adversarial weight-perturbations are found by the search (not found by the random

samples). In this case, the testing error bound 𝐖̅̅𝜃,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) defined in the expression (7.16)

is simply estimated by

𝐖̅̅
𝜃𝑚,𝑛00,𝛿0

𝑎𝑑𝑎 ,𝑇,𝑉,𝛿0

𝛼 (𝑓𝑤) =
𝑛01 + 𝑛1

𝑛
 , (7. 23)

where 𝑛00 , 𝑛01 , and 𝑛1 are the sizes of 𝑇00 , 𝑇01 and 𝑇1 , respectively, and 𝜃𝑚,𝑛00 ,𝛿0 ,(𝑥,𝑦)
𝑎𝑑𝑎 is

called the adaptive threshold and is defined by

𝜃𝑚,𝑛00,𝛿0 ,(𝑥,𝑦)
𝑎𝑑𝑎 ≔ {

0 if (𝑥, 𝑦) ∈ 𝑇01 ∪ 𝑇1

𝜃𝑚,𝑛00,𝛿0

𝑓𝑖𝑥 if (𝑥, 𝑦) ∈ 𝑇00
 . (7. 24)

The expected threshold 𝛩 of the adaptive threshold can be bound by 𝛩̅ defined by

𝛩̅ =
𝑛̅00

𝑛
𝜃𝑚,𝑛̅00,𝛿0

𝑓𝑖𝑥 , (7. 25)

where (𝑛̅00/𝑛) is the upper bound of (𝑛00/𝑛) and can be estimated by

𝑛̅00 ≔ 𝑛 × 𝑘𝑙−1 (
 𝑛00

𝑛
,
1

𝑛
ln (

2

 𝛿
)) . (7. 26)

7.4 Estimation experiments of weight-perturbed generalization error bounds

In this section, it is reported that experiments and the results for estimating weight-perturbed

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

66

generalization error bounds by applying expressions (7.9) and (7.15) explained Section 7.3.

In the experiments, we estimated the weight-perturbed generalization error bounds of 8

classifiers, named CNN#1~8, that are trained convolutional neural networks by the dataset

MNIST (pixels: 28 × 28, grayscale: [0,1]) of handwritten digit images with the training hyper-

parameters shown in Table 7.1. The size 𝑛 of testing dataset 𝑇 is 5000, the size 𝑚 of the set

𝑉 of random weight-perturbation samples is 1215 , the uncertainty 𝛿 (i.e., the acceptable

degradation of confidence) for generalization error bounds is 0.1 (10%), and the uncertainty

𝛿0 caused by random weight-perturbation samples is 0.05 (5%). Here, the size 1215 of

perturbation samples is determined for making the fixed threshold 1%, as explained Subsection

7.3.1. For the adaptive threshold, an I-FGSM (iterative fast gradient sign method) like algorithm

is used for searching for adversarial weight-perturbations in vertexes of the possible

perturbation area (the hyper-rectangular). Perturbations are added to the weights and the

biases (the total number is 121930) in the CNNs, but they are not added to training parameters

(scale 𝛾 and shift 𝛽) of the batch normalization.

Table 7.1 The training hyper-parameters for the 8 classifiers CNN#1~8

Figure 7.3 The estimation results of randomly/worst perturbed generalization bounds of CNN#4

Figure 7.3 shows the estimation results (confidence 90%) of randomly weight-perturbed

generalization error bounds and worst weight-perturbed generalization error bounds for the

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

67

fixed threshold and the adaptive threshold of CNN#4. The horizontal axis represents the ratio 𝛼

of weight-perturbations to weights. The errors start to increase at 𝛼 = 0.01 , 0.1, and 1, for

worst weight-perturbations with the adaptive threshold, worst weight-perturbations with the

fixed threshold, and random weight-perturbations, respectively. Figure 7.3 also shows the

bounds of the expected values of thresholds, and the adaptive threshold decreases while the

generalization error (i.e., the number of found adversarial perturbations) increases.

Figure 7.4 The estimation results of randomly perturbed generalization error bounds

Figure 7.5 The estimation results of worst perturbed generalization error bounds (adaptive)

Figure 7.4 and Figure 7.5 show the estimation results of randomly and worst weight-

perturbed generalization error bounds with the adaptive threshold, respectively. It is noted that

the classifiers have different tendencies for random perturbations and worst perturbations. For

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

68

example, the classifier CNN#3 is clearly less robust (faster increasing the error) for random

perturbations than CNN#4, while there is little difference between CNN#3 and CNN4 for worst

perturbations.

For the cases of 𝛼 = 0.3 in Figure 7.4 and 𝛼 = 0.003 in Figure 7.5, the generalization gap

Δ𝐺 (the difference between the generalization bound and the perturbed testing error), the

perturbation gap Δ𝑃 (the difference between the perturbed testing error and testing error),

and the testing error 𝑇𝐸 for each classifier are shown in Figure 7.6 and Figure 7.7. The

generalization gaps are about 1~2%, and therefore, tight bounds are estimated. Even when

there are only slight differences between the testing errors 𝑇𝐸, there are often clear differences

between perturbed testing errors (𝑇𝐸 + Δ𝑃).

Figure 7.6 The generalization gaps Δ𝐺 and the random-perturbation gaps Δ𝑃

Figure 7.7 The generalization gaps Δ𝐺 and the worst-perturbation gap Δ𝑃

The program, named WP-GEB-Estimator, used in the experiments in this section has been

published from the website [71]. The "WP-GEB" in the tool name stands for Weight-Perturbed

Generalization Error Bounds.

7.5 Related work

Although we have introduced theorems that guarantee generalization error bounds based on

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

69

testing errors (i.e., by using testing datasets) in this chapter, there are many theorems, e.g., PAC

Bayesian theorems [67][73], based on training errors (i.e., by using training datasets). The

advantage of generalization error bounds based on training errors is that they can be applied to

the theoretical study of training (algorithms) for reducing generalization errors. The other

advantage is that they can be estimated only by training datasets without additional datasets

such as testing datasets. However, it was reported [74] that the estimation results of the

generalization error bounds based on training errors are often near 100% (i.e., vacuous).

Recently, several methods were proposed for estimating non-vacuous generalization error

bounds (less than 100%) even based on training errors. For example, such methods use

distributions of classifiers (i.e., input-output functions instead of weights) in the PAC-Bayes

bounds [74], or random labelled data in training [75], or model compression [76]. But it is not

easy to practically reduce the generalization error bounds based on training errors. On the other

hand, although the generalization error bounds based on testing errors needs testing datasets,

they can estimate bounds close to generalization errors. For example, the generalization gaps

Δ𝐺 are less than 2% in Figure 7.6 and Figure 7.7. In this chapter, we have focused the

generalization error bounds based on testing errors from the perspective of practical evaluation

of classifiers.

(a) Based on Theorem 2 in Tsai et al. [77] (b) Based on the expression (7.23)

Figure 7.8 The estimation results of worst weight-perturbed testing errors

There are some existing works on estimating worst weight-perturbed generalization errors.

For example, Tsai et al. [77] theoretically analyzed worst weight-perturbed feed-forward neural

networks, and presented the formal expressions of pairwise class margin by accumulating

maximum errors in each layer (Theorem 2 in [77]). The worst weight-perturbed generalization

error bounds can be estimated based on the pairwise class margin with confidence 100%. For

example, Figure 7.8 shows the estimation results of the worst weight-perturbed testing errors

of 3 classifiers, that are trained small 3-layer feed-forward neural networks by MNIST with

different regularizations (𝐿2 -regularization: 0 , 0.0001 , and 0.0002), and Figure 7.8 (a) is

estimated based on Theorem 2 in [77] and (b) is estimated based on the expression (7.23) in

this chapter. The estimation based on Theorem 2 in Tsai et al. corresponds the case of the fixed

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

70

threshold 0% with the confidence 100% . Consequently, Figure 7.8 (a) shows larger testing

error bounds than Figure 7.8 (b) that is estimated by the adaptive threshold less than 1% with

confidence 95% at least. Although the perturbation-scale is difference between Figure 7.8 (a)

and (b), they show similar tendencies about robustness for worst weight-perturbations. The

estimation method based on Theorem 2 in [77] is sophisticated, but it should be noted that it

strongly depends on the architectures of neural networks.

7.6 Towards the evaluation of “the stability of trained models”

The stability of trained models is one of the 14 internal quality properties described in

Machine Learning Quality Management Guideline [1] and it represents that machine-learned

components reasonably behave even for unseen input data. In this chapter, we have focused on

the randomly/worst weight-perturbed generalization errors based on testing errors, have

explained how to estimate them, and have demonstrated the usefulness by experiments. It is

expected that such generalization error bounds will be useful for evaluating “the stability of

trained models” by the following reasons:

(1) Why are perturbed generalization error bounds estimated?

As shown in the experiment results (e.g., see Figure 7.4 and Figure 7.5) in Section 7.4,

the potential differences of performance can be clearly observed by adding weight-

perturbations. In fact, it has been reported [65][66] that there are high correlations

between the generalization performance and the robustness for (especially worst)

weight-perturbations. The both of random weight-perturbations and worst weight-

perturbations are useful for evaluating classifiers because they often show different

tendencies.

(2) Why are perturbations added to weights instead of inputs?

Although perturbations are often added to inputs (mainly images), it is difficult to

apply them to unsorted inputs (e.g., city-names in tabular data). Weight-perturbations

can be applicable to neural-classifiers for any type of inputs.

(3) Why are generalization error bounds estimated?

Instead of weight-perturbed generalization error bounds, weight-perturbed testing

errors (𝑇𝐸 + Δ𝑃 in Figure 7.6 and Figure 7.7) seem to be sufficient for evaluating the

classifiers. However, such testing errors cannot guarantee behaviors for unseen data

not included in samples. The weight-perturbed generalization error bounds can

guarantee that the expected value of misclassification is less than a constant with

probability (i.e., confidence) for any input selected from a distribution, and they can be

easily estimated from the weight-perturbed testing errors.

(4) Why are generalization error bounds based on testing errors used?

Although most of recent research papers on generalization error bounds are based on

training errors, the estimation results of such bounds are often vacuous as explained

in Section 7.5. Currently, it is thought to be practical for evaluating realistic classifiers

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

71

to apply generalization error bounds based on testing errors.

When providing trained classifiers to third parties, it will be helpful for the users to include

the estimation results such as Figure 7.4 and Figure 7.5 of the randomly/worst weight-perturbed

generalization error bounds in the performance specifications of the classifiers because they can

statistically guarantee the upper bounds of misclassifications with probability.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

72

8 Adversarial Example Detection

8.1 Research summary

With the goal of practically establishing a method for determining whether a given input

image is an adversarial example, we focus on the following points regarding attacks and

detection methods that generate adversarial examples. We are conducting a survey of typical

technologies.

– Supporting adversarial example detection program code and confirmation by

computational experiment

– Reproduction of experimental results of adversarial example detection method papers

– Implementation of the framework for detecting adversarial examples

Adversarial example detection stands for detecting adversarial examples from given inputs,

and existing state-of-the-art adversarial example detection methods can be divided into four

main categories.

① Metric based approaches (example [78])

② Denoisers approaches (example [79])

③ Prediction inconsistency based approaches (example [80])

④ Neural Network Invariant Checking (NIC) approaches (example [81])

In this chapter, we report the results of additional test experiments to compare and evaluate

adversarial example detection methods based on each of these approaches ① to ④. As reported

in the paper [81], it was confirmed that the approach of ④ (NIC: Neural Network Invariant

Checking) shows the highest detection rate among ① to ④. In this follow-up experiment, the

published implementation code was used for ① to ③, but the implementation code was not

published for ④, so a computer experiment was conducted by implementing the NIC according

to the paper [81]. Therefore, this chapter mainly describes the NIC ④.

After explaining the outline of the four approaches, the method of detecting adversarial

examples by the NIC is explained, and the implementation method is described. Then, the results

of the follow-up experiments of each approach and the experiments by the NIC are described.

Finally, we report the implementation of the NIC framework and the effectiveness evaluation.

8.2 Overview of adversarial example detection approaches

In this section, the four state-of-the-art approaches to adversarial example detection are

overviewed.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

73

 Metric based approaches

A method of performing statistical measurements of inputs (and outputs of each neuron) to

detect adversarial examples, Ma et al. recently proposed the use of a measurement called Local

Intrinsic Dimensionality (LID) [78]. This method estimates the LID value that evaluates the

space-filling capacity of the area surrounding the sample by calculating the distance distribution

of the sample and the number of neighbors in each layer, and the adversarial example tends to

have a large LID value. It uses certain properties to detect adversarial examples. LID is superior

to traditional kernel density estimation (KD) and Bayesian uncertainty (BU) for detecting

adversarial examples and is currently the state-of-the-art technology for this type of detector.

 Denoisers approaches

It is a method of detecting adversarial examples by removing noise in a preprocessing step

for each input. In this method, the training model or noise remover (encoder and decoder) is

trained to filter the image so that the key components in the training model can be highlighted.

This filter can be used to remove noise added by an attacker to generate adversarial examples

and correct misclassification. MagNet [79] is a method of detecting adversarial examples using

detectors and reformers (trained automatic encoders and automatic decoders).

 Prediction inconsistency based approach

A method of detecting adversarial examples by measuring the discrepancy between the

original neural network and the neural network enhanced by human perceptible attributes.

Feature Squeezing [80], the state-of-the-art detection technique of this method, can achieve very

high detection rates against a variety of attacks. Feature squeezing focuses on detecting gradient-

based attacks, focusing on the ability of attackers to generate adversarial examples through the

unnecessarily large input feature space of deep neural networks DNN. The procedure for

detecting adversarial examples by feature squeezing is shown below.

1. Apply squeezing technology (a technology that reduces the color depth of an image and

smooths the image) to the original input image to generate multiple squeezed images.

2. Input the original input image and multiple squeeze images into the deep neural

network, and measure the distance between the inference result (prediction vector) of

the input image and the inference result of each squeeze image.

3. When one of the differences (distances) between the original input image and the

squeeze image exceeds the threshold value, the original input image is detected as an

adversarial example.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

74

 Neural Network Invariant Checking (NIC) approaches

The NIC (Neural Network Invariant Checking) method focuses on value invariants (VIs) and

provenance invariants (PIs) inside deep neural networks [81]. The value invariant VI is the

distribution of possible neuron values in each layer, and the provenance invariant PI is the

possible neuron value pattern of two consecutive layers (summary of correlation between

features across two layers). If an input violates these invariants, the input is detected as an

adversarial example. The NIC [81] method trains these invariant VIs and PIs with benign input

data and model them as a one-class classification (OCC) problem that detects adversarial

examples. A higher detection rate has been reported than the methods based on (1) to (3)

explained above. The outline and the implementation of the NIC system design are explained in

detail in Sections 8.3 and 8.4, respectively.

8.3 NIC system design overview

The procedure for building the NIC detector (steps A to C: during training, D to E: during

execution) is explained by using Figure 8.1 [81]. This invariant VI, PI training uses only non-

adversarial benign data.

Figure 8.1 Outline of system design (Fig. 8 of thesis [81])

– Step A: Collect the output value of each neuron at each layer of each training data input.

– Step B: For each layer 𝑘 (e.g., L1, L2), extract the sub-models from the input layer to

the 𝑘 layer and add a new softmax layer with the same output label as the original

model. Then create a derived model (DerivedModel in Figure 8.1)

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

75

– Step C: Enter each benign training data for all derived models and collect the final

output of these models (i.e., the output probability values of the individual classes). For

each set of consecutive layers, we train using the distribution of the classification

results of this derivative model. This trained distribution is the PI for these two layers.

– Step D: Input each test data 𝑡 (for example, the image of “4” in Figure 8.1) to all

derivative models in addition to the original model, and observe the activation value of

each layer of the original model. Collect the value OV (for example, OV(L1, 𝑡) in Figure

8.1) and the classification result (set) of the derivative model of consecutive layers.

From this classification result, the observed source OP (for example, OP(L1, L2, 𝑡), etc.)

is obtained.

– Step E: Calculate the probability D that the OV and OP fit the corresponding VI and PI

distributions. The possibility that the input 𝑡 is adversarial is predicted at the same

time by aggregating all these D values.

8.4 NIC system implementation

In order to detect adversarial examples based on NIC, a direct sum space (vector) is

constructed from PI and VI, and for classifying this vector, an OSVM (One Class Support Vector

Machine) is constructed. When the input to the layer 𝑙 of the trained DNN (Deep Neural

Network) model (hereinafter referred to as M) is 𝑥𝑙 , the output 𝑓𝑙 of the layer 𝑙 is given by

the following equation:

𝑓𝑙 = 𝜎(𝑥𝑙 ∙ 𝑤𝑙
𝑇 + 𝑏𝑙),

where 𝜎 is the activation function of the layer 𝑙, 𝑤𝑙
𝑇 is the weight matrix, and 𝑏𝑙 is the bias.

At this time, the direct sum spaces classified by VI, PI, and OSVM are obtained as follows.

– VI calculation: The VI of each layer 𝑙 of model M is determined by solving the following

optimization problem.

𝑉𝐼𝑙 = min [∑ 𝐽(𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓1(𝑥) ⋯ 𝑤𝑇 − 1)

𝑥∈𝑋𝑏

]

Here, 𝐽 is the error evaluation function, and 𝑋𝑏 is the batch used to create M. Also, ∘

is a monoid, in this case a vectorized version of 𝑓𝑘 .

– PI calculation: 𝑃𝐼𝑙,𝑙+1(𝑥) is based on the classification output of the derived models of

the layers 𝑙 and 𝑙 + 1 . The probability that 𝑥 is benign (non-adversarial) is

estimated by solving the following optimization problem.

𝑃𝐼𝑙,𝑙+1(𝑥) = min [∑ 𝐽(𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝑙(𝑥), 𝐷𝑙+1(𝑥)) ⋯ 𝑤𝑇 − 1)

𝑥∈𝑋𝑏

]

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

76

Here, a derivative model 𝐷𝑙 of the layer 𝑙 is defined as follows, with the softmax layer

added after the layer 𝑙.

𝐷𝑙 = softmax ∘ 𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓1

– Direct sum space of PI and VI: From the VI and PI obtained by the above optimization,

the following direct sum space (vector) is created for each batch of training data of

model M.

𝑉𝐼1 ⨁ 𝑃𝐼1,2 ⨁ 𝑉𝐼2 ⨁ 𝑃𝐼2,3 ⋯ 𝑉𝐼𝐵 ⨁ 𝑃𝐼𝐵−1,𝐵 ⨁ 𝑉𝐼𝐵

This vector is 𝐿 × 3 dimensions (𝐿 is the number of layers of M), which is the vector

space (direct sum space) of the number 𝐵. The NIC performs OSVM on this space.

8.5 Computer experiment

In order to confirm the effect of adversarial example detection technology (NIC), the

experiment of the paper [81] was retested in the following experimental environment.

– Hardware environment: AIST ABCI [82]

– Datasets: Two common image datasets, MNIST [83] and CIFAR-10 [84], were used for

image classification experiments. MNIST is a grayscale image dataset used for

handwritten digit recognition, and CIFAR-10 is a color image dataset used for object

recognition. For NIC, we also conducted an experiment on LFW (face image) [85].

– Attacks: Non-targeted attacks (FGSM 𝐿2 ,𝐿∞), targeted attacks JSMA, and gradient-

based attacks (CW 𝐿2) were used to generate adversarial examples. The Cleverhans

library [86] was used to implement FGSM and JSMA

First, in order to evaluate the adversarial example detection method based on each of the

approaches ① to ③, the published implementation code of LID [78], MagNet [79], and feature

squeezing [80] was used to evaluate each paper. Then, follow-up experiments were conducted.

As the result, the detection rates reported in each paper were able to be confirmed, and among

these three, feature squeezing showed the highest detection rate.

Next, in order to evaluate the adversarial example detection method based on the approach

④, an experiment was conducted using the NIC code implemented in Section 8.4. Table 8.1 to

Table 8.3 show the results of adversarial example detection and computational experiments on

the MNIST, CIFAR-10, and LFW datasets, respectively. Here, the correct answer rate is the rate at

which adversarial examples are input to the classifier (OSVM) described in Section 7.4 and are

determined to be adversarial examples. The CNN model used in the experiment is LeNet5, and

the OSVM Kernel is RBF (MNIST: γ = 0.1 to 0.27, CIFAR-10: γ = 0.11 to 0.2, LFW: γ = 0.005 to

0.90). In the results of this experiment, high detection performance was confirmed not only for

the dataset and attack method reported in the paper [81], but also for the unreported dataset

LFW and attack method (FGSM 𝐿∞).

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

77

Table 8.1 Adversarial example detection computational experiment results for MNIST dataset

Data Set Attack Invariant Performance Number

of data

Performance reported

in the paper [81]

MNIST FGSM 𝐿2 VI 97% 2800 100%

PI 98% 84%

NIC 97% 100%

FGSM 𝐿∞ VI 98% 2800 ―

PI 98% ―

NIC 98% ―

JSMA VI 100% 280 83%

PI 100% 100%

NIC 100% 100%

CW2 VI 100% 280 95%

PI 100% 96%

NIC 100% 100%

Trojan VI 100% 3200 100%

PI 100% 100%

NIC 100% 100%

Table 8.2 Adversarial example detection computational experimental results for CIFAR-10 dataset

Data Set Attack Invariant Performance Number

of data

Performance reported

in the paper [81]

CIFAR-10 FGSM 𝐿2 VI 99% 6400 100%

PI 99% 52%

NIC 99% 100%

FGSM 𝐿∞ VI 100% 6400 ―

PI 100% ―

NIC 100% ―

JSMA VI 97% 320 62%

PI 95% 100%

NIC 96% 100%

CW2 VI 98% 320 88%

PI 95% 89%

NIC 96% 100%

Trojan VI 100% 3200 100%

PI 100% 100%

NIC 100% 100%

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

78

Table 8.3 Adversarial example detection computational experiment results for LFW dataset

Data Set Attack Invariant Performance Number

of data

Performance reported

in the paper [81]

LFW FGSM 𝐿2 VI 98% 28222

―

PI 98% ―

NIC 98% ―

FGSM 𝐿∞ VI 100% 2822

―

PI 100% ―

NIC 100% ―

JSMA VI 100% 280

―

PI 100% ―

NIC 100% ―

CW2 VI 100% 840

―

PI 100% ―

NIC 100% ―

Trojan VI 100% 3200 ―

PI 100% ―

NIC 100% ―

8.6 Implementation of the NIC framework

We have implemented a simplified NIC method based on Sections 8.3 and 8.4 in order to

conduct the computer experiments for confirming the effectiveness of NIC in Section 8.5. In the

simplified implementation, we have found some implementation issues in the original paper

[81]. In this section, while clarifying the issues, we reconsider the algorithm in order to construct

the NIC framework for high detection rates of adversarial examples on the testbed, that is used

for creating an environment (attack, defense and detection) to benchmark vulnerability to

adversarial examples.

 Overview of the NIC framework

The NIC framework consists of five parts: taking output from each layer; calculating VI and PI

for normal data; calculating VI, PI and NIC for adversarial examples; evaluating OSVM and

displaying results. The use case of the NIC framework is shown in Figure 8.2. In addition, the

process steps for detecting adversarial examples are shown in Figure 8.3.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

79

Figure 8.2 NIC framework use cases

Figure 8.3 Processing procedures for adversarial example detection by the NIC framework

As shown in Figure 8.3, the overall processing procedure for adversarial example detection

by the NIC framework consists of five parts. The function of each part (input, processing and

output) is shown in Table 8.4.

 Output of OSVM evaluation results

The NIC framework has been implemented using scikit-learn, that is a Python machine

learning library. For example, the scikit-learn's OneClassSVM class is used for implementing the

final part of the OSVM as shown in Figure 8.3 as follows.

class sklearn.svm.OneClassSVM(array, kernel='rbf', gamma='auto', nu=0.3)

Here, the meaning of each argument is as follows.

・ array: parameters trained by normal data and used for detecting adversarial examples in

NIC.

・ kernel: the RBF kernel is used as the algorithm for One Class SVM.

・ gamma: the gamma parameter of the RBF kernel is set to 'auto'.

・ nu: the upper limit for the percentage of training error and the lower limit for the

percentage of support vector are set to 0.3 in this case.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

80

Table 8.4 Functions of the parts comprising the adversarial example detection process procedure

Output extraction from each layer

input Normal data (images)

Adversarial examples (image).

Trained models, trained on normal data (models trained on normal data)

processing Obtain the output of each layer of the trained model for normal and adversarial

examples and save it in 'numpy in numpy' format.

output (e.g.

of dynamo)

Output data from each layer

VI and PI calculations for normal data

input Output data from each layer of normal data

processing Calculate VI, PI from the output data of each layer of normal data.

output (e.g.

of dynamo)

VI, PI

VI and PI calculations for adversarial examples

input Output data from each layer of adversarial examples

Created at the time of calculation to PI with normal data Derived model of PI

processing Compute VI, PI from the output of each layer of adversarial examples.

output (e.g.

of dynamo)

VI, PI

Calculation of NIC

input VI of normal data, PI

VI of adversarial examples, PI

processing NIC of normal data is created from VI and PI of normal data and NIC of

adversarial examples is calculated from VI and PI of adversarial examples,

respectively.

output (e.g.

of dynamo)

NIC for normal data, NIC for adversarial examples

Evaluation and display of results in OSVM.

input NIC of normal data

NIC for adversarial examples.

processing Train OSVM on normal data to create a model, and use this trained model to

judge adversarial examples; OSVM uses sk-learn's one class svm API. The

judgement results are then displayed.

output (e.g.

of dynamo)

Assessment Results

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

81

Figure 8.4 shows output values from each layer when one normal data and its adversarial

examples are input to the NIC framework, where the horizontal axis is the ID of the model

derived to calculate the NIC at each layer (Note. There are multiple outputs from each layer for

one image, for example, a convolution layer in CNN), and the vertical axis represents the signed

distance of each NIC to the One Class SVM classification hyperplane of the NIC of the normal data,

that is the closeness to the normal data in this case. The black dots in Figure 8.4 (a) represent

the output relative to the normal data, the red dots in Figure 8.4 (b) are the outputs for

adversarial examples. In this calculation, the adversarial examples in Figure 8.4 (b) were

generated by using the FGSM 𝐿∞ attack method.

(a) Normal input data (b) Adversarial input data

Figure 8.4 Comparison of NIC framework outputs

After training One Class SVM by normal data, One Class SVM function 𝑓(𝑥) can be used for

detecting adversarial examples such that if 𝑓(𝑥) ≥ 0 then the input 𝑥 is normal otherwise it

is adversarial. Most of the output for normal data are close to zero as shown in Figure 8.4 (a),

while approximately 94% of the outputs for adversarial examples are explicitly less than zero as

shown in Figure 8.4 (b). This difference of the output between Figure 8.4 (a) and (b) explains

that NIC can effectively detect adversarial examples.

 Generation of adversarial examples

As shown in Figure 8.3, NIC framework does not include the program for generating

adversarial examples. We recommend for using CleverHans [87] if adversarial examples are

necessary. Figure 8.5 shows some examples in the normal (original) images of handwritten

numbers (MNIST) and the adversarial examples generated from the normal images by attack

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

82

method FGSM 𝐿2 with the misclassified labels inferred for the adversarial images. As shown in

the inference results (label 8) in Figure 8.5 (b), all generated adversarial examples are

misclassified as 8.

(a) Original MNIST data (b) Generated adversarial examples

Figure 8.5 Example of adversarial example generation from MNIST (handwritten numbers) images

and its decision results

 Reducing calculation costs for VI, PI and VIC

The calculation method for VI, PI and NIC in the original paper [81] has been explained in

Section 8.4, but if the calculation method is used, then the dimension of each data (vector)

becomes very large, due to the problem so-called 'dimension demon'. Therefore, we have tried

to reduce the dimension as much as possible. In the following section, we explain how each

calculation is simplified.

– Calculation of VI: in the NIC framework, let 𝑋𝐵 = 1 for clarifying the correspondence

between the input data (both normal and adversarial data) and the VI, PI and NIC (i.e.,

for the accuracy of the verification). In addition, as all input data are normalized and

calculated, the following simplified formula is used:

𝑉𝐼𝑙 = 𝑓𝑙 ∘ 𝑓𝑙−1 ∘ ⋯ ∘ 𝑓2 ∘ 𝑓1.

– Calculation of PI: as in the case VI above, let 𝑋𝐵 = 1. Then, the following simplified

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

83

formula is used:

𝑃𝐿𝑙,𝑙−1 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝑙 , 𝐷𝑙−1) ∘ ⋯ ∘ 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷2 , 𝐷1).

– NIC calculations: for dimensionality suppression, 𝑋𝐵 is set as follows:

𝑋𝐵 = (The number of layers from which output are obtained)

8.7 Evaluation of the effectiveness of NIC with the Kullback-Leibler divergence

This section reports the results of the evaluation of the effectiveness of the NIC by calculating

the degree of divergence between the images of normal and adversarial examples and the NIC

by using the Kullback-Leibler divergence.

 Kullback-Leibler divergence

The Kullback-Leibler divergence, denoted by 𝐾𝐿(𝑃 ∥ 𝑄) , is a measure of the degree of

divergence between two probability distributions 𝑃 (the probability density functions 𝑝) and

Q (the probability density function 𝑞). The Kullback-Leibler divergence is defined by the

following equation.

𝐾𝐿(𝑃 ∥ 𝑄) = ∫ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)

The Kullback-Leibler divergence is 0 when the two distributions are the same, and it increases

as the divergence increases (the convergence is not guaranteed due to the presence of log).

Figure 8.6 shows a simple calculation example of the Kullback-Leibler divergence. In Figure 8.6

(a), both of the distributions 𝑃 and 𝑄 are the same normal distribution whose mean and

variance are 0.5 and 0.5, respectively, and then the 𝐾𝐿(𝑃 ∥ 𝑄) is 0. In Figure 8.6 (b), the means

of 𝑃 and 𝑄 are 0.5 and 0.55, and the variance of them are 0.5 and 0.55, respectively, and then

the 𝐾𝐿(𝑃 ∥ 𝑄) is 0.053.

(a) In the case of the same distributions (b) In the case of the different distributions

Figure 8.6 Example of Kullback-Leibler divergence calculation

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

84

 Kullback-Leibler divergence estimation

The Kullback-Leibler divergence assumes that the probability distributions to be compared

are fixed, but in practice, both normal and adversarial data are simply sets of images and the

distributions are unknown. Fortunately, a method for approximating the Kullback-Leibler

divergence between sets with unknown probability distributions [88] is known. The outline of

the approximation method calculates the Kullback-Leibler divergence as a solution of an

optimization problem on the following linear polynomial of 𝑟𝜃(𝑥) as the constraint for

minimizing the density ratio 𝑟(𝑥) = 𝑝(𝑥)/𝑞(𝑥):

𝑟𝜃(𝑥) = ∑ 𝜃𝑗𝜓𝑗(𝑥) = 𝜽𝑇𝝍(𝑥)

𝑏

𝑗=1

,

where 𝜓𝑗(𝑥) is the RBF kernel and is defined by

𝜓𝑗(𝑥) = exp (−
‖𝑥 − 𝑥′‖2

2ℎ2
),

where ℎ is a determinable constant and is the bandwidth.

Then, the Kullback-Leibler divergence can be approximately calculated by the linear

polynomial 𝑟𝜃(𝑥) obtained as the solution of the optimization problem as follows [88]:

𝐾𝐿(𝑃 ∥ 𝑄) ~
1

𝑛
∑ log 𝑟(𝒙𝑖)

𝑛

𝑖=1

 Effectiveness evaluation of NIC

In Section 8.5, we have shown that the NIC method can effectively detect adversarial

examples as anomaly data by experiments. In this section, we show the degree of divergence

between normal data and adversarial examples by comparing the Kullback-Leibler divergence

of them for explaining the reason why NIC is effective.

At first, Figure 8.7 shows the computational results of the Kullback-Leibler of normal data

and adversarial examples (generated by the attack method FGSM 𝐿2) for 50 image data samples,

as shown in Figure 8.5. The approximate value of the Kullback-Leibler divergence for the FGSM

in Figure 8.7 is 0.46. Here, note that the average value of the multiple Kullback-Leibler divergence

is shown in Figure 8.7 because there are multiple values of NIC for one image as explained in

Figure 8.4.

Next, Figure 8.8 shows the computational results of the Kullback-Leibler of NIC of the normal

data and the adversarial examples used in Figure 8.7. The approximate value of the Kullback-

Leibler divergence in Figure 8.8 is 4.47. Therefore, the Kullback-Leibler divergence in Figure 8.8

is about 10 times larger than one in Figure 8.7. We conjecture that the results mean that the

perturbations added to normal data can be extracted as more explicit difference by the NIC

method.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

85

Figure 8.7 The Kullback-Leibler divergence for normal and adversarial examples

Figure 8.8 The Kullback-Leibler divergence of NIC for normal and adversarial examples

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

86

9 AI Quality Management in Operation

In this chapter, we report on the results of a survey on the latest technologies for detecting

changes in data distribution over time, called concept drift, and adapting machine learning

models to the changed distribution for AI quality management during operation. In addition, we

also introduce the results of a survey on the latest unsupervised domain adaptation technologies

published at recent international major conferences on machine learning and computer vision

for further development of the AI quality management technologies.

Concept drift is one of the main causes of performance degradation of machine learning

models running in AI systems during operation. In order to maintain quality that is satisfied at

the beginning of the operation of the system throughout the operation period, it is necessary to

continuously monitor whether drift occurs or not. In addition, if necessary, we retrain the

machine learning models in the system with the latest data to adapt them to the distribution of

data changed after the drift occurs. As the use of machine learning technologies has been

expanded in recent years, AI systems operating with such technologies will require processing a

large amount of data without their true labels (ground truths) in a short period of time, including

types of data that have not been handled in the past.

In the fiscal year 2019-2020, we conducted a survey on the latest technologies for detecting

and adapting to the concept drift to maintain the performance of machine learning models

during operation. As a result of this survey, we found that most of the methods developed so far

are supervised methods that use true labels of data additionally acquired during operation for

the detection and adaptation. However, such true labels are not always available or are often

costly even if they are available. In order to expand the applicability of the detection and

adaptation methods and reduce their operational costs, we found that an "unsupervised

method" that does not use the true labels or a "semi-supervised method" that uses only a limited

number of the true labels is promising. We summarized the results of the surveys organized and

discussed from this perspective.

For details on the survey on detection methods, see Section 7.8 of the Machine Learning

Quality Management Guidelines [1]. In addition, adaptation methods are summarized in our

survey result [89]. Table 9.1 shows the comparison of our survey with the other existing surveys

on concept drift detection and adaptation methods. Gama et al. summarized their survey result

in [90] and Lu et al. added recently published drift detection and adaptation methods in [91].

Those survey papers mainly focus on introducing "supervised" methods that use true labels of

operational data for drift detection and adaptation. On the other hand, Ishida et al. introduced

"unsupervised" concept drift detection methods that do not use true labels of data for drift

detection in [92]. In comparison with those existing survey results, we introduced

"unsupervised" and "semi-supervised" concept drift adaptation methods that do not use or use

only a limited number of true labels as mentioned above. Furthermore, we introduced those drift

adaptation methods based on the characteristic of each method. In detail, we listed ten

remarkable unsupervised/semi-supervised drift adaptation methods and classified them

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

87

according to: i) types of drift that can be dealt with effectively, ii) processes where true labels of

data are required during operation and the percentage of the labeled data used in verifications

shown in the papers, and iii) machine learning models or clustering methods used in each

method. Finally, we closed our survey by discussing further development of unsupervised and

semi-supervised concept drift adaptation methods using knowledge obtained from relevant

unsupervised domain adaptation techniques.

Table 9.1 Comparison of survey papers on concept drift detection and adaptation

 Detection Adaptation

Supervised Gama et al.[90], Lu et al.[91]

Unsupervised /

Semi-supervised
Ishida et al.[92]

Okawa and Kobayashi [89], [93]

(Ours)

In the future operation of AI systems, there is a growing need for new adaptation techniques

that do not use the original training data (i.e., source data) to adapt machine learning models

from the viewpoint of data privacy and portability in addition to that can deal with changes other

than those in the distribution of input data. In particular, adaptation techniques that do not

depend on such training data (source data) are called "source-free domain adaptation

techniques" or "test-time adaptation techniques (if they adapt online)”. These source-free and

test-time adaptation technologies have been attracting more attention because they can reduce

costs not only on management and transmission of source data for adaptation but also on

security for data storage.

In FY2021, following the above-mentioned surveys, we conducted a survey on the latest

research trends in unsupervised adaptation techniques to data changes presented at major

international conferences in the fields of machine learning and computer vision held in 2019-

2021, focusing on unsupervised concept drift adaptation techniques and unsupervised domain

adaptation techniques. The result of this survey is summarized in [93]. In detail, we listed and

introduced 15 remarkable concept drift detection and unsupervised domain adaptation

methods and classified them according to: i) kinds of adaptation problems, ii) kinds of data and

labels used in detection and adaptation, iii) availability for adaptation to label shift, and iv) kinds

of validation tasks. According to the results of this survey, it is shown that there has been

development of the source-free adaptation and test-time adaptation techniques mentioned

above and adaptation techniques that are able to adapt to changes other than the distribution of

input data, such as label shifts. Furthermore, some techniques have been validated not only for

image classification problems, but also for semantic segmentation and object detection

problems. These research trends in unsupervised adaptation techniques are expected to solve

new problems in AI operations, such as maintaining data privacy, and to be used in various

situations in future AI operations.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

88

10 References

Chapter 1:

[1] National Institute of Advanced Industrial Science and Technology (AIST), Machine Learning

Quality Management Guideline (4th English Edition), Digital Architecture Research Center,

Cyber Physical Security Research Center, Artificial Intelligence Research Center. The 4th

English Edition will be published soon, while the 3rd English Edition is currently available

as Technical Report DigiARC-TR-2023-01/ CPSEC-TR-2023001, 2023.

https://www.digiarc.aist.go.jp/en/publication/aiqm/

[2] Yuri Miyagi, Masaki Onishi, Machine Learning Model Comparison Visualization Focusing on

Worker Information, The 24th Meeting on Image Recognition and Understanding 2021, I31-

22, 2021.

[3] Yuri Miyagi, Masaki Onishi, Comparative Visualization Method Focusing on Workers for

Evaluation of Machine Learning Models, The 49th Symposium on Visualization, OS12, 2021.

[4] Tomoumi Takase, Dynamic batch size tuning based on stopping criterion for neural

network training, Neurocomputing, Volume 429, pp.1-11, 2021.

[5] Shin Nakajima, Software Testing with Statistical Partial Oracles, 10th SOFL+MSVL, 2021.

Chapter 2:

[6] Satoshi Hara, My Bookmark : Interpretability in Machine Learning, Journal of Japanese

Society for Artificial Intelligence, vol. 33, no. 3, pp. 366-369, 2018 (in Japanese).

[7] Fred Hohman, Minsuk Kahng, Robert Pienta, Duen Horng Chau, Visual Analytics in Deep

Learning: An Interrogative Survey for the Next Frontiers, IEEE Transactions on

Visualization and Computer Graphics, vol. 25, no. 8, pp. 2674-2693, 2018.

[8] Bilal Alsallakh, Amin Jourabloo, Mao Ye, Xiaoming Liu, Liu Ren, Do Convolutional Neural

Networks Learn Class Hierarchy?, IEEE Transactions on Visualization and Computer

Graphics, vol. 24, no. 1, pp. 152-162, 2018.

[9] Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, Shixia Liu, Analyzing the Training Processes of

Deep Generative Models, IEEE Transactions on Visualization and Computer Graphics, vol.24,

no.1, pp.77-87, 2018.

[10] Jorge Piazentin Ono, Sonia Castelo, Roque Lopez, Enrico Bertini, Juliana Freire, Claudio Silva,

PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines, IEEE

Transactions on Visualization and Computer Graphics, vol.27, no.2, pp.390-400, 2021.

[11] Saleema Amershi, Maya Cakmak, W. Bradley Knox, Todd Kulesza, Power to the People: The

Role of Humans in Interactive Machine Learning. AI Magazine, vol.35, no.4, pp.105-120,

2014.

[12] Heungseok Park, Jinwoong Kim, Minkyu Kim, Ji-Hoon Kim, Jaegul Choo, Jung-Woo Ha and

Nako Sung, VISUALHYPERTUNER: VISUAL ANALYTICS FOR USER-DRIVEN

https://www.digiarc.aist.go.jp/en/publication/aiqm/
https://www.sciencedirect.com/science/article/pii/S0925231220318476
https://www.sciencedirect.com/science/article/pii/S0925231220318476

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

89

HYPERPARAMTER TUNING OF DEEP NEURAL NETWORKS, 2019.

Chapter 3:

[13] Cubuk, E. D., Dyer, E. S., Lopes, R. G., and Smullin, S., Tradeoffs in Data Augmentation: An

Empirical Study. In Proceedings of International Conference on Learning Representations,

2021.

[14] Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q., RandAugment: Practical Automated Data

Augmentation with a Reduced Search Space. In Neural Information Processing Systems, 33,

2020.

[15] Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D., Mixup: Beyond Empirical Risk

Minimization. In International Conference on Learning Representations, 2018.

[16] Takase, T., Feature Combination Mixup: Novel Mixup Method Using Feature Combination for

Neural Networks, Neural Computing and Applications, 2023.

[17] Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Lopez-Paz, D., and Bengio, Y.,

Manifold Mixup: Better Representations by Interpolating Hidden States. In International

Conference on Machine Learning, pp. 6438–6447, PMLR, 2019.

[18] Kim, J-H., Choo, W., and Song, H. O., Puzzle mix: Exploiting saliency and local statistics for

optimal mixup. In International Conference on Machine Learning, 2020.

[19] Beckham, C., Honari, S., Verma, V., Lamb, A., Ghadiri, F., Hjelm, R. D., Bengio, Y., and Pal, C. On

adversarial mixup resynthesis. In Neural Information Processing Systems, 2019.

[20] Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. CutMix: Regularization Strategy to Train

Strong Classifiers with Localizable Features. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, 6023–6032, 2019.

[21] Lopes, R. G., Yin, D., Poole, B., Gilmer, J., and Cubuk, E. D., Improving Robustness Without

Sacrificing Accuracy with Patch Gaussian Augmentation. arXiv preprint arXiv: 1906.02611,

2019.

Chapter 4:

[22] Nakajima, S., Quality Issues in Machine Learning from Software Engineering Viewpoints,

Maruzen Publisher, 2020. (in Japanese)

[23] Pei, K., et al., DeepXplore: Automated Whitebox Testing of Deep Learning Systems, In Proc.

26th SOSP, 2017, pp.1-18.

[24] Nakajima, S., Distortion and Faults in Machine Learning Software, In Post-Proc. 9th

SOFL+MSVL, 2020, pp.29-41.

[25] Ma, L., et al., DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems, In

Proc. ASE, 2018, pp.120-131.

[26] Tian, Y., et al., DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous

Cars, In Proc. 40th ICSE, 2018, pp.303-314.

[27] Zhang, M., et al., DeepRoad: GAN-Based Metamorphic Testing and Input Validation

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

90

Framework for Autonomous Driving Systems, In Proc. ASE, 2018, pp.132-142.

[28] Zhang, P, et al., CAGFuzz: Coverage-Guided Adversarial Generative Fussing Testing of Deep

Learning Systems, arXiv:1911.07931, 2019.

[29] Harel-Canada, F., et al., Is Neuron Coverage a Meaningful Measure for Testing Deep Neural

Networks? In ESEC/FSE, 2020, pp.851-862.

[30] Kim, J. et al., Guiding Deep Learning System Testing Using Surprise Adequacy, In Proc. 41st

ICSE, 2019, pp.1039-1049.

Chapter 5:

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, The MIT Press 2016.

[32] Simon Haykin, Neural Networks and Learning Machines (3ed.), Pearson India 2016.

[33] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Anath Grama, MODE:

Automated Neural Network Model Debugging via State Differential Analysis and Input

Selection, In Proc. 26th ESE/FSE, pp.175-186, 2018.

[34] Shin Nakajima, Software Testing with Statistical Partial Oracles – Applications to Neural

Network Software, In Proc. 10th SOFL+MSVL, pp.275-192, 2021.

[35] Shin Nakajima and Tsong Yueh Chen, Generating Biased Dataset for Metamorphic Testing of

Machine Learning Programs, In Proc. 31st ICTSS, pp.56-64, 2019.

[36] Gregor Montavon, Genevieve B. Orr, and Klaus-Robert Muller (eds.), Neural Networks: Tricks

of the Trade (2ed.), Springer 2012.

[37] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov, Membership Inference

Attacks Against Machine Learning Models, arXiv:1610.05820v2, 2017.

[38] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha, Privacy Risk in Machine

Learning: Analyzing the Connection to Overfitting, arXiv:1709.01604v5, 2018.

[39] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng Wang, Haixu Tang, Carl

A. Gunter, and Kai Chen, Understanding Membership Inferences on Well-Generalized

Learning Models, arXiv:1802.04489, 2018.

[40] Charu C. Aggarwal, Outlier Analysis (2ed.), Springer 2017.

[41] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer, Replux: An

Efficeint SMT Solver for Verifying Deep Neural Networks, In Proc. 29th CAV, pp.97-117, 2017.

[42] Pang Wei Koh and Percy Liang, Understanding Black-box Predictions via Influence

Functions, arXiv:1703.04730v3, 2020.

[43] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana, DeepXplore: Automated Whitebox

Testing of Deep Learning Systems, In Proc. 26th SOSP, pp.1-18, 2017.

[44] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting

Su, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. DeepGauge: Multi-Granularity Testing

Criteria for Deep Learning Systems, In Proc. 33rd ASE, pp.120-131, 2018.

[45] Yizhen Dong, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao, Xinyu Wang, Li

Wang, Jin Song Dong, and Dai Ting. There is Limited Correlation between Coverage and

Robustness for Deep Neural Networks. arXiv:1911.05904, 2019.

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

91

[46] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, and Miryung Kim, In Proc. 28th

ESEC/FSE, pp.851-862, 2020.

[47] Shin Nakajima, Distortion and Faults in Machine Learning Software, In Proc. 9th SOFL+MSVL,

pp.29-41, 2019.

[48] Stephanie Abrecht, Maram Akila, Sujan Sai Gannamaneni, Konrad Groh, Christian

Heinzemann, Sebastian Houben, and Matthjas Woehrle, Revisiting Neuron Coverage and Its

Application to Test Generation, In Proc. SAFECOMP 2020 Workshop, pp.289-301, 2020.

[49] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang, Free Lunch for Testing:

Fuzzing Deep-Learning Libraries from Open Source, In Proc. 44th ICSE, pp.995-1007, 2022.

[50] Md Johirul Islam, Giang Nguyen, Rangeet Plan, and Hridesh Rajan, A Comprehensive Study

on Deep Learning Bug Characteristics, In Proc. 27th ESEC/FSE, pp.510-520, 2019.

[51] Jiakun Cao, Meiziniu Li, Xiao Chen, Ming Wen, Yongqiang Tian, Bo Wu, and Shing-Chi Cheung,

DeepFD: Automated Fault Diagnosis and Localization for Deep Learning Programs, In Proc.

44th ICSE, pp.573-585, 2022.

[52] Yanhui Li, Linghan Meng, Lin Chen, Li Yu, Di Wu, Yuming Zhou and Baowen Xu, Training Data

Debugging for the Fairness of Machine Learning Software, In Proc. 44th ICSE, pp.2215-2227,

2022.

Chapter 6:

[53] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus, Intriguing properties of neural networks, The International

Conference on Learning Representations (ICLR 2014), pp.1-10, 2014.

https://arxiv.org/abs/1312.6199

[54] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer, Reluplex: An

Efficient SMT Solver for Verifying Deep Neural Networks, International Conference on

Computer-Aided Verification (CAV), 2017. https://arxiv.org/abs/1702.01135

[55] Vincent Tjeng, Kai Xiao, and Russ Tedrake, Evaluating robustness of neural networks with

mixed integer programming, International Conference on Learning Representations (ICLR),

2019. https://arxiv.org/abs/1711.07356

[56] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit

S. Dhillon, and Luca Daniel, Towards Fast Computation of Certified Robustness for ReLU

Networks, International Conference on Machine Learning, PMLR 80, pp.5276-5285, 2018.

https://arxiv.org/abs/1804.09699

[57] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel, CNN-Cert: An

Efficient Framework for Certifying Robustness of Convolutional Neural Networks, The

Thirty-Third AAAI Conference on Artificial Intelligence (AAAI 2019), pp.3240-3247, 2019.

https://arxiv.org/abs/1811.12395

[58] Tsui-Wei Weng, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan

Oseledets, and Luca Daniel, PROVEN: Verifying Robustness of Neural Networks with a

Probabilistic Approach, International Conference on Machine Learning (ICML 2019), PMLR

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1702.01135
https://arxiv.org/abs/1711.07356
https://arxiv.org/abs/1804.09699
https://arxiv.org/abs/1811.12395

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

92

vol. 97, pp.6727-6736, 2019. http://proceedings.mlr.press/v97/weng19a.html

[59] Nicholas Carlini and David Wagner, Towards Evaluating the Robustness of Neural Networks,

IEEE Symposium on Security and Privacy (SP), pp.39-57, 2017.

https://arxiv.org/abs/1608.04644

[60] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh,

and Luca Daniel, Evaluating the Robustness of Neural Networks: An Extreme Value Theory

Approach, International Conference on Learning Representations (ICLR 2018), 2018.

https://arxiv.org/abs/1801.10578

[61] Eric Wong and J. Zico Kolter, Provable defenses against adversarial examples via the convex

outer adversarial polytope, International Conference on Machine Learning (ICML 2018),

PMLR vol. 80, pp.5283-5292, 2018. https://arxiv.org/abs/1711.00851

[62] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana,

Certified Robustness to Adversarial Examples with Differential Privacy, The IEEE

Symposium on Security and Privacy (SP), 2019. https://arxiv.org/abs/1802.03471

[63] Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter, Certified Adversarial Robustness via

Randomized Smoothing, The 36th International Conference on Machine Learning (ICML

2019), 2019. https://arxiv.org/abs/1902.02918

[64] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian

Vladu, Towards Deep Learning Models Resistant to Adversarial Attacks, The Sixth

International Conference on Learning Representations (ICLR 2018), 2018.

https://arxiv.org/abs/1706.06083

Chapter 7:

[65] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio,

Fantastic Generalization Measures and Where to Find Them, International Conference on

Learning Representations (ICLR 2020). https://arxiv.org/abs/1912.02178

[66] Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan

Caballero, Linbo Wang, Ioannis Mitliagkas, and Daniel M. Roy, In search of robust measures

of generalization, NeurIPS 2020. arXiv:2010.11924. https://arxiv.org/abs/2010.11924

[67] Andreas Maurer, A Note on the PAC Bayesian Theorem, arXiv:cs/0411099, 2004.

https://arxiv.org/abs/cs/0411099

[68] John Langford and Rich Caruana, (Not) Bounding the True Error, NIPS, 2001

https://papers.nips.cc/paper_files/paper/2001/hash/98c7242894844ecd6ec94af67ac82

47d-Abstract.html

[69] María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári, Tighter risk

certificates for neural networks, Journal of Machine Learning Research, 2021.

arXiv:2007.12911. https://arxiv.org/abs/2007.12911

[70] Yoshinao Isobe, Estimating Generalization Error Bounds for Worst Weight-Perturbed

Neural Classifiers, Proceedings of the 38th Annual Conference of the Japanese Society for

Artificial Intelligence, 2024 (in Japanese).

http://proceedings.mlr.press/v97/weng19a.html
https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1801.10578
https://arxiv.org/abs/1711.00851
https://arxiv.org/abs/1802.03471
https://arxiv.org/abs/1902.02918
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1912.02178
https://arxiv.org/abs/2010.11924
https://arxiv.org/abs/cs/0411099
https://papers.nips.cc/paper_files/paper/2001/hash/98c7242894844ecd6ec94af67ac8247d-Abstract.html
https://papers.nips.cc/paper_files/paper/2001/hash/98c7242894844ecd6ec94af67ac8247d-Abstract.html
https://arxiv.org/abs/2007.12911

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

93

[71] Yoshinao Isobe, WP-GEB-Estimator -- WP-GEB: Weight-Perturbed Generalization Error

Bounds. https://staff.aist.go.jp/y-isobe/wp-geb-estimator

[72] John Langford, Tutorial on Practical Prediction Theory for Classification, JMLR, vol.6, No.10,

pp.273–306, 2005. https://jmlr.org/papers/v6/langford05a.html

[73] Oliver Catoni, PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical

Learning, Institute of Mathematical Statistics, Lecture Notes-Monograph Series, vol. 56,

2007. https://www.jstor.org/stable/i20461497

[74] Guillermo Valle-Pérez and Ard A. Louis, Generalization bounds for deep learning,

arXiv:2012.04115v2, 2020. https://arxiv.org/abs/2012.04115

[75] Saurabh Garg, Sivaraman Balakrishnan, J. Zico Kolter, and Zachary C. Lipton, RATT:

Leveraging Unlabeled Data to Guarantee Generalization, ICML 2021.

arXiv:2105.00303. https://arxiv.org/abs/2105.00303

[76] Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz,

Non-vacuous Generalization Bounds at the ImageNet Scale: a PAC-Bayesian Compression

Approach, ICLR 2019. https://arxiv.org/abs/1804.05862

[77] Yu-Lin Tsai, Chia-Yi Hsu, Chia-Mu Yu, and Pin-Yu Chen, Formalizing Generalization and

Adversarial Robustness of Neural Networks to Weight Perturbations, NeurIPS 2021.

https://proceedings.neurips.cc/paper/2021/hash/a3ab4ff8fa4deed2e3bae3a5077675f0-

Abstract.html

Chapter 8:

[78] X. Ma, Characterizing adversarial subspaces using Local Intrinsic Dimensionality, 2018.

[79] D. Meng , Magnet: a two-pronged defense against adversarial examples, in Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017.

[80] W. Xu, Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks, in

Proceedings of the 2018 Network and Distributed Systems Security Symposium (NDSS),

2018.

[81] Shiqing Ma, NIC: Detecting Adversarial Samples with Neural Network Invariant Checking,

Network and Distributed Systems Security Symposium (NDSS), NDSS 2019.

[82] National Institute of Advanced Industrial Science and Technology (AIST), AI Bridging Cloud

Infrastructure, https://abci.ai/ja/

[83] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document

recognition, Proceedings of the IEEE, vol. 86, no. 11, pp.2278–2324, 1998. [Online].

Available: http://yann.lecun.com/exdb/mnist/

[84] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images, 2009.

[85] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, Labeled faces in the wild: A database

for studying face recognition in unconstrained environments, University of Massachusetts,

Amherst, Tech. Rep. 07-49, October 2007.

[86] Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben Feinman, and Patrick McDaniel.

cleverhans v1.0.0: an adversarial machine learning library. arXiv preprint arXiv:1610.00768,

https://staff.aist.go.jp/y-isobe/wp-geb-estimator
https://jmlr.org/papers/v6/langford05a.html
https://www.jstor.org/stable/i20461497
https://arxiv.org/abs/2012.04115
https://arxiv.org/abs/2105.00303
https://arxiv.org/abs/1804.05862
https://proceedings.neurips.cc/paper/2021/hash/a3ab4ff8fa4deed2e3bae3a5077675f0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a3ab4ff8fa4deed2e3bae3a5077675f0-Abstract.html
https://abci.ai/ja/
http://yann.lecun.com/exdb/mnist/

Technical Report on Machine Learning National Institute of
Quality Evaluation and Improvement Advanced Industrial Science and Technology
4th English edition DigiARC-TR-2024-02 / CPSEC-TR-2024002

94

2016.

[87] CleverHans, https://github.com/cleverhans-lab/cleverhans

[88] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori, Density Ratio Estimation in

Machine Learning, Cambridge University Press, 2012.

Chapter 9:

[89] Yoshihiro Okawa and Kenichi Kobayashi, A Survey on Concept Drift Adaptation

Technologies for Unlabeled Data in Operation, Proceedings of the 35th Annual Conference of

the Japanese Society for Artificial Intelligence, pp.1-4, 2021 (in Japanese),

https://doi.org/10.11517/pjsai.JSAI2021.0_2G4GS2f03.

[90] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia,

A survey on concept drift adaptation, ACM Computer Surveys, vol. 46, no. 4, pp.1-37, 2014.

[91] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan ZhangJ, Learning under

Concept Drift: A Review, in IEEE Transactions on Knowledge and Data Engineering, vol. 31,

no. 12, pp. 2346-2363, 2019.

[92] Tsutomu Ishida, Hiroaki Kingetsu, Yasuto Yokota, Yoshihiro Okawa, Kenichi Kobayashi, and

Katsuhito Nakazawa, Evaluation of Concept Drift Detection Methods for Unlabeled Data in

Operation, Proceedings of the 34th Annual Conference of the Japanese Society for Artificial

Intelligence, pp.1-4, 2020 (in Japanese),

https://doi.org/10.11517/pjsai.JSAI2020.0_4Rin105.

[93] Yoshihiro Okawa and Kenichi Kobayashi, Recent Research Trends in Unsupervised

Adaptation Techniques for Data Changes, Proceedings of the 36th Annual Conference of the

Japanese Society for Artificial Intelligence, pp.1-4, 2022 (in Japanese),

https://doi.org/10.11517/pjsai.JSAI2022.0_3Yin240.

https://github.com/cleverhans-lab/cleverhans
https://doi.org/10.11517/pjsai.JSAI2021.0_2G4GS2f03
https://doi.org/10.11517/pjsai.JSAI2020.0_4Rin105
https://doi.org/10.11517/pjsai.JSAI2022.0_3Yin240

